Skip to main content
Log in

Characterization of ABC transporter genes, sll1180, sll1181, and slr1270, involved in acid stress tolerance of Synechocystis sp. PCC 6803

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Over 50 ATP-binding cassette (ABC) transporter-related genes are detected in the Synechocystis sp. PCC 6803 genome by genome sequence analysis. Deletion mutants of other substrate-unknown ABC transporter genes were screened for their acid stress sensitivities in a low-pH medium to identify ABC transporters involved in acid resistance. We found that a mutant of sll1180 encoding proteins with homology to HlyB in Escherichia coli (E.coli) is more sensitive to acid stress than wild-type (WT) cells and analyzed the abundance of expression of the genes in WT cells under acid stress condition by quantitative real-time reverse transcriptase-polymerase chain reaction. sll1180 expression increased in the WT cells after acid stress treatment. Immunofluorescence revealed that Sll1180 localized in the plasma membrane. These results suggest that Sll1180 has an important role in the growth of Synechocystis sp. PCC 6803 under acid stress conditions. HlyB, HlyD, and TolC complex transport HlyA in E.coli; therefore, we searched for genes corresponding to these in Synechocystis sp. PCC 6803. A BlastP search suggested that HlyA, HlyD, and TolC proteins had homology to Sll1951, Sll1181, and Slr1270. Therefore, we constructed deletion mutant of these genes. sll1181 and slr1270 mutant cells revealed acid stress sensitivity. The bacterial two-hybrid analysis showed that Sll1180 interacted with Sll1181 and Sll1951. Dot blot analysis of Sll1951-His revealed that the sll1180 and sll1181 mutant cells did not transport Sll1951-His from the cytoplasm to the extracellular matrix. These results suggest that Sll1180 and Sll1181 transport Sll1951 and that Sll1951—outside of the cells—might be a key factor in acid stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

BACTH:

Bacterial two hybrid

E. coli :

Escherichia coli

QRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

r.t.:

Room temperature

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Synechocystis 6803:

Synechocystis sp. PCC 6803

TCA:

Trichloroacetic acid

WT:

Wild type

References

  • Agarwal R, Zakharov S, Hasan SS, Ryan CM, Whitelegge JP, Cramer WA (2014) Structure-function of cyanobacterial outer-membrane protein, Slr1270: homolog of Escherichia coli drug export/colicin import protein, TolC. FEBS Lett 588:3793–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blight MA, Holland IB (1994) Heterologous protein secretion and the versatile Escherichia coli haemolysin translocator. Trends Biotechnol 12:450–455

    Article  CAS  PubMed  Google Scholar 

  • Claudio B, Flavio B (1998) Soil acidification by acid rain in forest ecosystems: a case study in northern Italy. Sci Total Environ 222:1–15

    Article  Google Scholar 

  • Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359

    Article  CAS  PubMed  Google Scholar 

  • Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochim Biophys Acta 11:149–161

    Article  CAS  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hihara Y, Sonoike K, Kanehisa M, Ikeuchi M (2003) DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 185:1719–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland IB, Peherstorfer S, Kanonenberg K, Lenders M, Reimann S, Schmitt L (2016) Type I protein secretion—deceptively simple yet with a wide range of mechanistic variability across the family. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0019-2015

    Article  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344:633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  CAS  PubMed  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290:339–348

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Ishizuka T, Katayama M, Kanehisa M, Bhattacharyya-Pakrasi M, Pakrasi HB et al (2004) Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 45:290–299

    Article  CAS  PubMed  Google Scholar 

  • Kochian KV (1995) Cellular mechanisms of aluminium toxicity and resistance in plant. Annu Rev Plant Physiol Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kowata H, Tochigi S, Takahashi H, Kojima S (2017) Outer membrane permeability of cyanobacterium Synechocystis sp. strain PCC 6803: studies of passive diffusion of small organic nutrients reveal the absence of classical porins and intrinsically low permeability. J Bacteriol. https://doi.org/10.1128/JB.00371-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecher J, Schwarz CK, Stoldt M, Smits SH, Willbold D, Schmitt L (2012) An RTX transporter tethers its unfolded substrate during secretion via a unique N-terminal domain. Structure 20:1778–1787

    Article  CAS  PubMed  Google Scholar 

  • Matsuhashi A, Tahara H, Ito Y, Uchiyama J, Ogawa S, Ohta H (2015) Slr2019, lipid A transporter homolog, is essential for acidic tolerance in Synechocystis sp. PCC 6803. Photosynth Res 125:267–277

    Article  CAS  PubMed  Google Scholar 

  • Mikami K, Kanesaki Y, Suzuki I, Murata N (2002) The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol 46:905–915

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Norling B, Zak E, Andersson B, Pakrasi H (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 436:189–192

    Article  CAS  PubMed  Google Scholar 

  • Ohta H, Shibata Y, Haseyama Y, Yoshino Y, Suzuki T, Kagasawa T et al (2005) Identification of genes expressed in response to acid stress in Synechocystis sp. PCC 6803 using DNA microarrays. Photosynth Res 84:225–230

    Article  CAS  PubMed  Google Scholar 

  • Oliveira P, Martins NM, Santos M, Pinto F, Büttel Z, Couto NA et al (2016) The versatile TolC-like Slr1270 in the cyanobacterium Synechocystis sp. PCC 6803. Environ Microbiol 18:486–502

    Article  CAS  PubMed  Google Scholar 

  • Sakiyama T, Ueno H, Homma H, Numata O, Kuwabara T (2006) Purification and characterization of a hemolysin-like protein, Sll1951, a nontoxic member of the RTX protein family from the Cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 188:3535–3542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakiyama T, Araie H, Suzuki I, Shiraiwa Y (2011) Functions of a hemolysin-like protein in the cyanobacterium Synechocystis sp PCC 6803. Arch Microbiol 193:565–571

    Article  CAS  PubMed  Google Scholar 

  • Sakurai I, Mizusawa N, Wada H, Sato N (2007) Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiol 145:1361–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangari FJ, Cayón AM, Seoane A, García-Lobo JM (2010) Brucella abortus ure2 region contains an acid-activated urea transporter and a nickel transport system. BMC Microbiol 10:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt L, Benabdelhak H, Blight MA, Holland IB, Stubbs MT (2003) Crystal structure of the nucleotide-binding domain of the ABC-transporter hemolysin B: identification of a variable region within ABC helical domains. J Mol Biol 330:333–342

    Article  CAS  PubMed  Google Scholar 

  • Schulein R, Gentschev I, Schlor S, Gross R, Goebel W (1994) Identification and characterization of two functional domains of the hemolysin translocator protein HlyD. Mol Gen Genet 245:203–211

    Article  CAS  PubMed  Google Scholar 

  • Silhavy JM, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sonoda M, Katoh H, Vermaas W, Schmetterer G, Ogawa T (1998) Photosynthetic electron transport involved in PxcA-dependent proton extrusion in Synechocystis sp. strain PCC 6803: effect of pxcA inactivation on CO2, HCO3-, and NO3-uptake. J Bacteriol 180:3799–3803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki I, Simon WJ, Slabas AR (2006) The heat shock response of Synechocystis sp. PCC 6803 analyzed by transcriptomics and proteomics. J Exp Bot 57:1573–1578

    Article  CAS  PubMed  Google Scholar 

  • Tahara H, Uchiyama J, Yoshihara T, Matsumoto K, Ohta H (2012) Role of Slr1045 in environmental stress tolerance and lipid transport in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1817:1360–1366

    Article  CAS  PubMed  Google Scholar 

  • Tahara H, Matsuhashi A, Uchiyama J, Ogawa S, Ohta H (2015) Sll0751 and Sll1041 are involved in acid stress tolerance in Synechocystis sp. PCC 6803. Photosynth Res 25:233–242

    Article  CAS  Google Scholar 

  • Thanabalu T, Koronakis E, Hughes C, Koronakis V (1998) Substrate-induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17:6487–6496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunekawa K, Shijuku T, Hayashimoto M, Kojima Y, Onai K, Morishita M et al (2009) Identification and characterization of the Na+/H+ antiporter NhaS3 from the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 284:16513–16521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama J, Asakura R, Kimura M, Moriyama A, Tahara H, Kobayashi Y et al (2012) Slr0967 and Sll0939 induced by the SphR response regulator in Synechocystis sp. PCC 6803 are essential for growth under acid stress conditions. Biochim Biophys Acta 1817:1270–1276

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama J, Asakura R, Moriyama A, Kubo Y, Shibata Y, Yoshino Y et al (2014) Sll0939 is induced by Slr0967 in the cyanobacterium Synechocystis sp. PCC 6803 and is essential for growth under various stress conditions. Plant Physiol Biochem 81:36–43

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama J, Kanesaki Y, Iwata N, Asakura R, Funamizu K, Tasaki R et al (2015) Genomic analysis of parallel-evolved cyanobacterium Synechocystis sp. PCC 6803 under acid stress. Photosynth Res 125:243–254

    Article  CAS  PubMed  Google Scholar 

  • Wandersman C, Delepelaire P (1990) TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci USA 87:4776–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Seror SJ, Blight M, Pratt JM, Broome-Smith JK, Holland IB (1991) Analysis of the membrane organization of an Escherichia coli protein translocator, HlyB, a member of a large family of prokaryote and eukaryote surface transport proteins. J Mol Biol 217:441–454

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Sheps JA, Ling V (1993) Complementation of transport-deficient mutants of Escherichia coli alpha-hemolysin by second-site mutations in the transporter hemolysin B. J Biol Chem 268:19889–19895

    CAS  PubMed  Google Scholar 

  • Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T, Aro EM (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp. PCC 6803. Plant Cell 16:3326–3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chen G, Qin C, Wang Y, Wei D (2012) Slr0643, an S2P homologue, is essential for acid acclimation in the cyanobacterium Synechocystis sp. PCC 6803. Microbiol 158:2765–2780

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Program for Development of Strategic Research Center in Private Universities, which was supported by MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Uchiyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchiyama, J., Itagaki, A., Ishikawa, H. et al. Characterization of ABC transporter genes, sll1180, sll1181, and slr1270, involved in acid stress tolerance of Synechocystis sp. PCC 6803. Photosynth Res 139, 325–335 (2019). https://doi.org/10.1007/s11120-018-0548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0548-2

Keywords

Navigation