Skip to main content
Log in

Evolution of protein transport to the chloroplast envelope membranes

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chloroplasts are descendants of an ancient endosymbiotic cyanobacterium that lived inside a eukaryotic cell. They inherited the prokaryotic double membrane envelope from cyanobacteria. This envelope contains prokaryotic protein sorting machineries including a Sec translocase and relatives of the central component of the bacterial outer membrane β-barrel assembly module. As the endosymbiont was integrated with the rest of the cell, the synthesis of most of its proteins shifted from the stroma to the host cytosol. This included nearly all the envelope proteins identified so far. Consequently, the overall biogenesis of the chloroplast envelope must be distinct from cyanobacteria. Envelope proteins initially approach their functional locations from the exterior rather than the interior. In many cases, they have been shown to use components of the general import pathway that also serves the stroma and thylakoids. If the ancient prokaryotic protein sorting machineries are still used for chloroplast envelope proteins, their activities must have been modified or combined with the general import pathway. In this review, we analyze the current knowledge pertaining to chloroplast envelope biogenesis and compare this to bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Theg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Day, P.M., Theg, S.M. Evolution of protein transport to the chloroplast envelope membranes. Photosynth Res 138, 315–326 (2018). https://doi.org/10.1007/s11120-018-0540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0540-x

Keywords

Navigation