Skip to main content

Advertisement

Log in

Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark

  • Technical Communication
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

F V/F M :

Maximum quantum yield of photosystem II photochemistry

NPQ :

Non-photochemical chlorophyll fluorescence quenching

PAR:

Photosynthetically active radiation

PSII:

Photosystem II

RWC :

Relative water content

RI :

Relative increase of collimated transmittance reflecting chloroplast avoidance movement induced by blue light

RI n :

The RI values normalized to the values of fresh control leaves

S :

Maximal slope of the linear part of the normalized T C(t) curve

S n :

The S values normalized to the values of fresh control leaves

T C :

Collimated transmittance

V J :

Relative height of the J-step in O-J-I-P transient

Ф PSII :

Effective quantum yield of photosystem II photochemistry

References

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Berg R, Königer M, Schjeide B-M, Dikmak G, Kohler S, Harris GC (2006) A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement. Photosynth Res 87:303–311

    Article  CAS  PubMed  Google Scholar 

  • Bertolli SC, Rapchan GL, Souza GM (2012) Photosynthetic limitations caused by different rates of water-deficit induction in Glycine max and Vigna unguiculata. Photosynthetica 50:329–336

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Brugnoli E, Björkman O (1992) Chloroplast movements in leaves: influence of chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynth Res 32:23–35

    Article  CAS  PubMed  Google Scholar 

  • Carter GA, McCain DC (1993) Relationship of leaf spectral reflectance to chloroplast water content determined using NMR microscopy. Remote Sens Environ 46:305–310

    Article  Google Scholar 

  • Cazzaniga S, Dall´Osto L, Kong S-G, Wada M, Bassi R (2013) Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J 76:568–579

    Article  CAS  PubMed  Google Scholar 

  • Davis PA, Hangarter RP (2012) Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves. Photosynth Res 112:153–161

    Article  CAS  PubMed  Google Scholar 

  • Erismann ND, Machado EC, Tucci MLS (2008) Photosynthetic limitation by CO2 diffusion in drought stressed orange leaves on three rootstocks. Photosynth Res 96:163–172

    Article  Google Scholar 

  • Frolec J, Řebíček J, Lazár D, Nauš J (2010) Impact of two different types of heat stress on chloroplast movement and fluorescence signal of tobacco leaves. Plant Cell Rep 29:705–714

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Goltsev V, Zaharieva I, Chernev P, Kouzmanova M, Kalaji HM, Yordanov I, Krasteva V, Alexandrov V, Stefanov D, Allakhverdiev SI, Strasser RJ (2012) Drough-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochim Biophys Acta 1817:1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Guissé B, Srivastava A, Strasser RJ (1995) The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. Archs Sci Genéve 48:147–160

    Google Scholar 

  • Guo Y, Tan J (2015) Recent advances in the application of chlorophyll a fluorescence from photosystem II. Photochem Photobiol 91:1–14

    Article  CAS  PubMed  Google Scholar 

  • Havaux M (1992) Stress tolerance of photosystem II in vivo. Plant Physiol 100:424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M (2009) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci USA 106:13106–13111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser WM (1987) Effects of water deficit on photosynthetic capacity. Physiol Plant 71:142–149

    Article  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  CAS  PubMed  Google Scholar 

  • Kondo A, Kaikawa J, Funaguma T, Ueno O (2004) Clumping and dispersal of chloroplasts in succulent plants. Planta 219:500–506

    Article  CAS  PubMed  Google Scholar 

  • Kong S-G, Wada M (2011) New insights into dynamic actin-based chloroplast photorelocation movement. Mol Plant 4:771–781

    Article  CAS  PubMed  Google Scholar 

  • Kong S-G, Wada M (2014) Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. Biochim Biophys Acta 1837:522–530

    Article  CAS  PubMed  Google Scholar 

  • Königer M, Bollinger N (2012) Chloroplast movement behaviour varies widely among species and does not correlate with high light stress tolerance. Planta 236:411–426

    Article  PubMed  Google Scholar 

  • Lazár D, Nauš J, Matoušková M, Flašarová M (1997) Mathematical modeling of changes in chlorophyll fluorescence induction caused by herbicides. Pestic Biochem Physiol 57:207–210

    Article  Google Scholar 

  • Lazár D, Pospíšil P, Nauš J (1999) Decrease of fluorescence intensity after the K step in chlorophyll a fluorescence induction is suppressed by electron acceptors and donors to photosystem 2. Photosynthetica 37:255–265

    Article  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Maai E, Shimada S, Yamada M, Sugiyama T, Miyake H, Taniguchi M (2011) The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid. J Exp Bot 62:3213–3221

    Article  CAS  PubMed  Google Scholar 

  • Matoušková M, Bartošková H, Nauš J, Novotný R (1999) Reaction of photosynthetic apparatus to dark desiccation sensitively detected by the induction of chlorophyll fluorescence quenching. J Plant Physiol 155:399–406

    Article  Google Scholar 

  • McCain DC, Croxdale J, Markley JL (1988) Water is allocated differently to chloroplasts in sun and shade leaves. Plant Physiol 86:16–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra KB, Iannacone R, Petrozza A, Mishra A, Armentano N, La Vecchia G, Trtílek M, Cellini F, Nedbal L (2012) Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci 182:79–86

    Article  CAS  PubMed  Google Scholar 

  • Nauš J, Rolencová M, Hlaváčková V (2008) Is chloroplast movement in tobacco plants influenced systematically after local illumination or burning stress? J Integr Plant Biol 50:1292–1299

    Article  PubMed  Google Scholar 

  • Nauš J, Prokopová J, Řebíček J, Špundová M (2010) SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement. Photosynth Res 105:265–271

    Article  PubMed  Google Scholar 

  • Ning L, Lu Z, Daley LS, Callis JB (1994) In vivo imaging of the interior of Tradescantia zebrinas leaves by optical cross correlation interferometry. Biochem Biophys Res Commun 205:638–644

    Article  CAS  PubMed  Google Scholar 

  • Park YI, Chow WS, Anderson JM (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol 111:867–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117

    Article  CAS  PubMed  Google Scholar 

  • Proctor MCF, Ligrone R, Duckett JG (2007) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot 99:75–93

    Article  CAS  Google Scholar 

  • Rojas-Pierce M, Whippo CW, Davis PA, Hangarter RP, Springer PS (2014) PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated chloroplast movements. Plant Physiol Biochem 83:185–193

    Article  CAS  PubMed  Google Scholar 

  • Samardakiewicz S, Krzeszowiec-Jelen W, Bednarski W, Jankowski A, Suski S, Gabrys H, Wozny A (2015) Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L. PLoS One 10:e0116757

    Article  PubMed  PubMed Central  Google Scholar 

  • Skotnica J, Matoušková M, Nauš J, Lazár D, Dvořák L (2000) Thermoluminescence and fluorescence study of changes in Photosystem II photochemistry in desiccating barley leaves. Photosynth Res 65:29–40

    Article  CAS  PubMed  Google Scholar 

  • Sniegowska-Swierk K, Dubas E, Rapacz M (2015) Drough-induced changes in the actin cytoskeleton of barley (Hordeum vulgare L.) leaves. Acta Physiol Plant 37:73

    Article  Google Scholar 

  • Strasser RJ, Govindjee (1992) On the O-J-I-P fluorescence transient in leaves and D1 mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in Photosynthesis, vol II. Kluwer, Dordrecht, pp 29–32

    Google Scholar 

  • Sztatelman O, Waloszek A, Banas AK, Gabrys H (2010) Photoprotective function of chloroplast avoidance movement: in vivo chlorophyll fluorescence study. J Plant Physiol 167:709–716

    Article  CAS  PubMed  Google Scholar 

  • Wada M (2013) Chloroplast movement. Plant Sci 210:177–182

    Article  CAS  PubMed  Google Scholar 

  • Walczak T, Gabrys H (1980) New type of photometer for measurements of transmission changes corresponding to chloroplast movements in leaves. Photosynthetica 14:65–72

    Google Scholar 

  • Williams WE, Gorton HL, Witiak SM (2003) Chloroplast movement in the field. Plant Cell Environ 26:2005–2014

    Article  Google Scholar 

  • Yamada M, Kawasaki M, Sugiyama T, Miyake H, Taniguchi M (2009) Differential positioning of C4 mesophyll and bundle sheath chloroplasts: aggregative movement of C4 mesophyll chloroplasts in response to environmental stresses. Plant Cell Physiol 50:1736–1749

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117:529–546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant No. LO1204 (Sustainable Development of Research in the Centre of the Region Haná) from the National Program of Sustainability I, Ministry of Education, Youth and Sports, Czech Republic. The authors thank Iva Ilíková and Alex Outlon for critical reading and language correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Špundová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nauš, J., Šmecko, S. & Špundová, M. Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark. Photosynth Res 129, 217–225 (2016). https://doi.org/10.1007/s11120-016-0291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0291-5

Keywords

Navigation