Skip to main content
Log in

Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Effects of pH, Ca2+, and Cl ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca2+ and Cl ions. One of Mn cations (“resistant” Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion (“flexible” Mn cation) is sensitive to pH, Ca2+, and Cl. This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca2+) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca2+ protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca2+ suggests that Ca2+ can control the redox potential of this cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DCPIP:

2,6-Dichlorophenolindophenol

H2Q:

Hydroquinone

OEC:

Oxygen-evolving complex

PSII:

Photosystem II

PSII(-Ca):

Ca2+-depleted PSII

RC:

Reaction center

TMB:

3,3′,5,5′-Tetramethylbenzidine

References

  • Allakhverdiev SI, Yruela I, Picorel R, Klimov VV (1997) Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II. Proc Natl Acad Sci USA 94:5050–5054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allakhverdiev SI, Tsuchiya T, Watabe K, Kojima A, Los DA, Tomo T, Klimov VV, Mimuro M (2011) Redox potentials of primary electron acceptor quinone molecule (QA) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci USA 108:8054–8058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bang S, Lee Y-M, Hong S, Cho K-B, Nishida Yu, Seo MS, Sarangi R, Fukuzumi S, Nam W (2014) Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes. Nat Chem 6:934–940. doi:10.1038/nchem.2055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boussac A, Zimmermann J-L, Rutherford AW (1989) EPR signals from modified charge accumulation states of the oxygen evolving enzyme in Ca2+-deficient photosystem II. Biochemistry 28:8984–8989

    Article  CAS  PubMed  Google Scholar 

  • Boussac A, Zimmermann J-L, Rutherford AW (1990) Factors influencing the formation of modified S2 EPR signal and the S3 EPR signal in Ca(2+)-depleted photosystem II. FEBS Lett 277:69–74

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ (2012) The extrinsic proteins of photosystem II. Biochim Biophys Acta 1817:121–142

    Article  CAS  PubMed  Google Scholar 

  • Cheniae GM, Martin IF (1972) Effects of hydroxylamine on photosystem II. II. Photoreversal of the NH2OH destruction of O2 evolution. Plant Physiol 50:87–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Commet A, Boswell N, Yocum CF, Popelka H (2012) pH optimum of the photosystem II H2O oxidation reaction: effects of PsbO, the manganese-stabilizing protein, Cl retention, and deprotonation of a component required for O2 evolution activity. Biochemistry 51:3808–3818

    Article  CAS  PubMed  Google Scholar 

  • Cox N, Messinger J (2013) Reflections on substrate water and dioxygen formation. Biochim Biophys Acta 1827:1020–1030

    Article  CAS  PubMed  Google Scholar 

  • Cox N, Pantazis DA, Neese F, Lubitz W (2013) Biological water oxidation. Acc Chem Res 46:1588–1596

    Article  CAS  PubMed  Google Scholar 

  • Dau H, Zaharieva I, Haumann M (2012) Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 16:3–10

    Article  CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Ghanotakis DF, Babcock GT (1983) Hydroxylamine as an inhibitor between Z and P680 in photosystem II. FEBS Lett 153:231–234

    Article  CAS  Google Scholar 

  • Ghanotakis DF, Babcock GT, Yocum CF (1984a) Structural and catalytic properties of the oxygen-evolving complex. Correlation of polypeptide and manganese release with the behavior of Z+ in chloroplasts and a highly resolved preparation of the PSII complex. Biochim Biophys Acta 765:388–398

    Article  CAS  Google Scholar 

  • Ghanotakis DF, Babcock GT, Yocum CF (1984b) Water-soluble 17 and 23 kDa polypeptides restore oxygen evolution activity by creating a high-affinity binding site for Ca2 the oxidizing side of photosystem II. FEBS Lett 170:169–173

    Article  CAS  Google Scholar 

  • Ghanotakis DF, Babcock GT, Yocum CF (1984c) Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted photosystem II preparations. FEBS Lett 167:127–130

    Article  CAS  Google Scholar 

  • Ghanotakis DF, Topper JN, Yocum CF (1984d) Exogenous reductants reduce and destroy the Mn-complex in photosystem II membranes depleted of the 17 and 23 kDa polypeptides. Biochim Biophys Acta 767:524–531

    Article  CAS  Google Scholar 

  • Ghirardi ML, Lutton TW, Seibert M (1996) Interactions between diphenylcarbazide, zinc, cobalt, and manganese on the oxidizing side of photosystem II. Biochemistry 35:1820–1828

    Article  CAS  PubMed  Google Scholar 

  • Herbert DE, Lionetti D, Rittle J, Agapie T (2013) Heterometallic triiron-oxo/hydroxo clusters: effect of redox-inactive metals. J Am Chem Soc 135:19075–19078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Shuvalov VA, Krasnovsky AA (1982) Effect of extraction and re-addition of manganese on light reactions of photosystem-II preparations. FEBS Lett 148:307–312

    Article  CAS  PubMed  Google Scholar 

  • Kuntzleman T, Yocum C (2005) Reduction-induced inhibition and Mn(II) release from the photosystem II oxygen-evolving complex by hydroquinone or NH2OH are consistent with a Mn(III)/Mn(III)/Mn(IV)/Mn(IV) oxidation state for the dark-adapted enzyme. Biochemistry 44:2129–2142

    Article  CAS  PubMed  Google Scholar 

  • Kuntzleman T, McCarrick R, Penner-Hahn J, Yocum C (2004) Probing reactive sites within the photosystem II manganese cluster: evidence for separate populations of manganese that differ in redox potential. Phys Chem Chem Phys 6:4897–4904. doi:10.1039/B406601D

    Article  CAS  Google Scholar 

  • Kuwabara T, Murata N (1983) Quantitative analysis of the inactivation of photosynthetic oxygen evolution and the release of polypeptides and manganese in the photosystem II particles of spinach chloroplasts. Plant Cell Physiol 24:741–747

    CAS  Google Scholar 

  • Latimer MJ, DeRose VJ, Yachandra VK, Sauer VK, Klein MP (1998) Structural effects of calcium depletion on the manganese cluster of photosystem II. Determination by x-ray absorption spectroscopy. J Phys Chem B 102:8257–8265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohmiller T, Cox N, Su J-H, Messinger J, Lubitz W (2012) The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal. J Biol Chem 287:24721–24733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mei R, Yocum CF (1992) Comparative properties of hydroquinone and hydroxylamine reduction of the Ca2+-stabilized O2—evolving complex of photosystem II: reductant-dependent Mn2+ formation and activity inhibition. Biochemistry 31:8449–8454. doi:10.1021/bi00151a009

    Article  CAS  PubMed  Google Scholar 

  • Miqyass M, van Gorkom HJ, Yocum CF (2007) The PSII calcium site revisited. Photosynth Res 92:275–287

    Article  CAS  PubMed  Google Scholar 

  • Miyao M, Inoue Y (1991) An improved procedure for photoactivation of photosynthetic oxygen evolution: effect of artificial electron acceptors on the photoactivation yield of NH2OH-treated wheat photosystem II membranes. Biochim Biophys Acta 1056:47–56

    Article  CAS  Google Scholar 

  • Nagata T, Zharmukhamedov SK, Khorobrykh AA, Klimov VV, Allakhverdiev SI (2008) Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations using synthetic Mn-complexes: a fluorine-19 NMR study of the reconstitution process. Photosynth Res 98:277–284

    Article  CAS  PubMed  Google Scholar 

  • Ono T, Inoue Y (1990) Abnormal redox reactions in photosynthetic O2-evolving centers in NaCl/EDTA-washed PS II. A dark-stable EPR multiline signal and an unknown positive charge accumulator. Biochim Biophys Acta 1020:269–277

    Article  CAS  Google Scholar 

  • Porra RJ, Tompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-A and chlorophyll-B extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Renger G (2012) Mechanism of light induced water splitting in photosystem II of oxygen evolving photosynthetic organisms. Biochim Biophys Acta 1817:1164–1176

    Article  CAS  PubMed  Google Scholar 

  • Riggs PJ, Mei R, Yocum CF, Penner-Hahn JE (1992) Reduced derivatives of the manganese cluster in the photosynthetic oxygen-evolving complex. J Am Chem Soc 114:10650–10651. doi:10.1021/ja00052a079

    Article  CAS  Google Scholar 

  • Riggs-Gelasko PJ, Mei R, Yocum CF, Penner-Hahn JE (1996) Reduced derivatives of the Mn cluster in the oxygen-evolving complex of photosystem II: an EXAFS study. J Am Chem Soc 118:2387–2399. doi:10.1021/ja9504496

    Article  Google Scholar 

  • Rivalta I, Amin M, Luber S, Vassiliev S, Pokhrel R, Umena Y, Kawakami K, Shen J-R, Kamiya N, Bruce D, Brudwig GW, Gunner MR, Batista VS (2011) Structural-functional role of chloride in photosystem II. Biochemistry 50:6312–6315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandusky PO, Yocum CF (1983) The mechanism of amine inhibition of the photosynthetic oxygen evolving complex: amines displace functional chloride form a ligand site on manganese. FEBS Lett 162:339–343

    Article  CAS  Google Scholar 

  • Schiller H, Dau H (2000) Preparation protocols for high-activity photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of the S2-state multiline signal by X-band EPR spectroscopy. J Photochem Photobiol B: Biol 55:138–144

    Article  CAS  Google Scholar 

  • Seibert M, DeWit M, Staehelin LA (1987) Structural localization of the O2-evolving apparatus to multimeric (tetrameric) particles on the lumenal surface of freeze-etched photosynthetic membranes. J Cell Biol 105:2257–2265

    Article  CAS  PubMed  Google Scholar 

  • Semin BK, Seibert M (2009) A simple colorimetric determination of the manganese content in photosynthetic membranes. Photosynth Res 100:45–48

    Article  CAS  PubMed  Google Scholar 

  • Semin BK, Davletschina LN, Aleksandrov AYu, Lanchinskaya VYu, Novakova AA, Ivanov II (2004) pH-dependence of iron binding to the donor side of photosystem II. Biochemistry (Moscow) 69:410–419

    Article  Google Scholar 

  • Semin BK, Davletshina LN, Ivanov II, Rubin AB, Seibert M (2008) Uncoupling of processes of molecular synthesis and electron transport in the Ca2+-depleted PSII membrane. Photosynth Res 98:235–249

    Article  CAS  PubMed  Google Scholar 

  • Semin BK, Davletshina LN, Ivanov II, Seibert M, Rubin AB (2012) Rapid degradation of the tetrameric Mn cluster in illuminated, PsbO-depleted PSII preparations. Biochemistry (Moscow) 77:152–156

    Article  CAS  Google Scholar 

  • Serrat FB (1998) 3,3′,5,5′,-Tetramethylbenzidine for the colorimetric determination of manganese in water. Mikrochim Acta 129:77–80

    Article  Google Scholar 

  • Tamura N, Inoue H, Inoue Y (1990) Inactivation of the water-oxidizing complex by exogenous reductants in PS II membranes depleted of extrinsic proteins. Plant Cell Physiol 31:469–477

    CAS  Google Scholar 

  • Tsui EY, Agapie T (2013) Reduction potentials of heterometallic manganese–oxido cubane complexes modulated by redox-inactive metals. Proc Natl Acad Sci USA 110:10084–10088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsui EY, Tran R, Yano J, Agapie T (2013) Redox-inactive metals modulate the reduction potential in heterometallic manganese-oxido clusters. Nat Chem 5:293–299. doi:10.1038/nchem.1578

    Article  PubMed Central  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Vass L, Styring S (1991) pH-Dependent charge equilibria between tyrosine-D and the S states in photosystem II. Estimation of relative midpoint redox potentials. Biochemistry 30:830–839

    Article  CAS  PubMed  Google Scholar 

  • Vrettos JS, Stone DA, Brudvig GW (2001a) Quantifying the ion selectivity of the Ca2+ site in photosystem II. Evidence for direct involvement of Ca2+ in O2 formation. Biochemistry 40:7937–7945

    Article  CAS  PubMed  Google Scholar 

  • Vrettos JS, Limburg J, Brudvig GW (2001b) Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim Biophys Acta 1503:229–245

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Bricker TM (1992) Structural organization of proteins on the oxidizing side of photosystem II. Two molecules of the 33-kDa manganese-stabilizing proteins per reaction center. J Biol Chem 267:25816–25821

    CAS  PubMed  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743. doi:10.1038/35055589

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris K. Semin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semin, B.K., Davletshina, L.N. & Rubin, A.B. Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants. Photosynth Res 125, 95–103 (2015). https://doi.org/10.1007/s11120-015-0155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0155-4

Keywords

Navigation