Skip to main content
Log in

Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

C3 carbon fixation has a bad reputation, primarily because it is associated with photorespiration, a biochemical pathway thought to waste a substantial amount of the carbohydrate produced in a plant. This review presents evidence collected over nearly a century that (1) Rubisco when associated with Mn2+ generates additional reductant during photorespiration, (2) this reductant participates in the assimilation of nitrate into protein, and (3) this nitrate assimilation facilitates the use of a nitrogen source that other organisms tend to avoid. This phenomenon explains the continued dominance of C3 plants during the past 23 million years of low CO2 atmospheres as well as the decline in plant protein concentrations as atmospheric CO2 rises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aranjuelo I, Cabrerizo PM, Arrese-Igor C, Aparicio-Tejo PM (2013) Pea plant responsiveness under elevated [CO2] is conditioned by the N source (N2 fixation versus NO3 fertilization). Environ Exp Bot. doi:10.1016/j.envexpbot.2013.06.002

  • Backhausen JE et al (1998) Transgenic potato plants with altered expression levels of chloroplast NADP-malate dehydrogenase: interactions between photosynthetic electron transport and malate metabolism in leaves and in isolated intact chloroplasts. Planta 207:105–114

    CAS  Google Scholar 

  • Backhausen JE, Kitzmann C, Horton P, Scheibe R (2000) Electron acceptors in isolated intact spinach chloroplasts act hierarchically to prevent over-reduction and competition for electrons. Photosynth Res 64:1–13

    CAS  PubMed  Google Scholar 

  • Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336. doi:10.1016/j.tplants.2010.03.006

    CAS  PubMed  Google Scholar 

  • Bloom AJ, Caldwell RM, Finazzo J, Warner RL, Weissbart J (1989) Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol 91:352–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bloom AJ, Sukrapanna SS, Warner RL (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol 99:1294–1301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bloom AJ, Smart DR, Nguyen DT, Searles PS (2002) Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc Natl Acad Sci USA 99:1730–1735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899–903. doi:10.1126/science.1186440

    CAS  PubMed  Google Scholar 

  • Bloom AJ, Randall L, Taylor AR, Silk WK (2012a) Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts. J Exp Bot 63:1997–2006. doi:10.1093/jxb/err410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bloom AJ, Rubio-Asensio JS, Randall L, Rachmilevitch S, Cousins AB, Carlisle EA (2012b) CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology 93:355–367

    PubMed  Google Scholar 

  • Bloom AJ, Burger M, Kimball BA, Pinter PJ (2014) Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat Clim Change 4:477–480. doi:10.1038/nclimate2183

    CAS  Google Scholar 

  • Burnell JN (1988) The biochemistry of manganese in plants. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic, Dordrecht, pp 125–137

    Google Scholar 

  • Burns IG, Zhang KF, Turner MK, Edmondson R (2010) Iso-osmotic regulation of nitrate accumulation in lettuce. J Plant Nutr 34:283–313. doi:10.1080/01904167.2011.533328

    Google Scholar 

  • Carlisle E, Myers SS, Raboy V, Bloom AJ (2012) The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. Front Plant Sci 3:195. doi:10.3389/fpls.2012.00195

    PubMed Central  PubMed  Google Scholar 

  • Cavagnaro TR, Gleadow RM, Miller RE (2011) Plant nutrient acquisition and utilisation in a high carbon dioxide world. Funct Plant Biol 38:87–96. doi:10.1071/fp10124

    CAS  Google Scholar 

  • Cen Y-P, Turpin DH, Layzell DB (2001) Whole-plant gas exchange and reductive biosynthesis in white lupin. Plant Physiol 126:1555–1565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Spreitzer RJ (1992) How various factors influence the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynth Res 31:157–164

    CAS  PubMed  Google Scholar 

  • Cheng L et al (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087. doi:10.1126/science.1224304

    CAS  PubMed  Google Scholar 

  • Chollet R, Anderson LL (1976) Regulation of ribulose 1,5-bisphosphate carboxylase-oxygenase activities by temperature pretreatment and chloroplast metabolites. Arch Biochem Biophys 176:344–351. doi:10.1016/0003-9861(76)90173-9

    CAS  PubMed  Google Scholar 

  • Christeller JT (1981) The effects of bivalent cations on ribulose bisphosphate carboxylase/oxygenase. Biochem J 193:839–844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christeller JT, Laing WA (1979) Effects of manganese ions and magnesium ions on the activity of soya-bean ribulose bisphosphate carboxylase/oxygenase. Biochem J 183:747–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chu DK, Bassham JA (1974) Activation of ribulose 1,5-diphosphate carboxylase by nicotinamide adenine-dinucleotide phosphate and other chloroplast metabolites. Plant Physiol 54:556–559. doi:10.1104/pp.54.4.556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cleland WW, Andrews TJ, Gutteridge S, Hartman FC, Lorimer GH (1998) Mechanism of Rubisco: the carbamate as general base. Chem Rev 98:549–562. doi:10.1021/cr970010r

    CAS  PubMed  Google Scholar 

  • Collatz GJ, Berry JA, Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114:441–454. doi:10.1007/s004420050468

    Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Change Biol 4:43–54

    Google Scholar 

  • Cousins AB, Bloom AJ (2004) Oxygen consumption during leaf nitrate assimilation in a C3 and C4 plant: the role of mitochondrial respiration. Plant, Cell Environ 27:1537–1545

    CAS  Google Scholar 

  • Cramer M, Myers J (1948) Nitrate reduction and assimilation in Chlorella. J Gen Physiol 32:93–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog 61:183–201

    CAS  Google Scholar 

  • Dukes JS et al (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:1829–1837

    CAS  Google Scholar 

  • Dutilleul C, Lelarge C, Prioul J-L, De Paepe R, Foyer CH, Noctor G (2005) Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol 139:64–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duval BD, Blankinship JC, Dijkstra P, Hungate BA (2012) CO2 effects on plant nutrient concentration depend on plant functional group and available nitrogen: a meta-analysis. Plant Ecol 213:505–521. doi:10.1007/s11258-011-9998-8

    Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285–299

    Google Scholar 

  • Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD (2004) Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob Change Biol 10:2121–2138

    Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Finzi AC et al (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci USA 104:14014–14019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484

    CAS  PubMed  Google Scholar 

  • Frank J, Kositza MJ, Vater J, Holzwarth JF (2000) Microcalorimetric determination of the reaction enthalpy changes associated with the carboxylase and oxygenase reactions catalysed by ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO). Phys Chem Chem Phys 2:1301–1304

    CAS  Google Scholar 

  • Galmes J et al (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant, Cell Environ 28:571–579

    CAS  Google Scholar 

  • Hall DO, Rao KK, Institute of Biology (1999) Photosynthesis. Studies in biology, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hanson AD, Hitz WD (1983) Water deficits and the nitrogen economy. In: Taylor HM, Jordan WR, Sinclair TR (eds) Limitations to efficient water use in crop production. ASA, Madison, pp 331–343

    Google Scholar 

  • Hodge A, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3:267–273. doi:10.1016/j.funeco.2010.02.002

    Google Scholar 

  • Houtz RL, Nable RO, Cheniae GM (1988) Evidence for effects on the in vivo activity of ribulose-bisphosphate carboxylase/oxygenase during development of Mn toxicity in tobacco. Plant Physiol 86:1143–1149. doi:10.1104/pp.86.4.1143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Igamberdiev AU, Bykova NV, Lea PJ, Gardestrom P (2001) The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. Physiol Plant 111:427–438

    CAS  PubMed  Google Scholar 

  • Ishijima S, Uchlbori A, Takagi H, Maki R, Ohnishi M (2003) Light-induced increase in free Mg2+ concentration in spinach chloroplasts: measurement of free Mg2+ by using a fluorescent probe and necessity of stromal alkalinization. Arch Biochem Biophys 412:126–132. doi:10.1016/s0003-9861(03)00038-9

    CAS  PubMed  Google Scholar 

  • Jordan DB, Ogren WL (1981) A sensitive assay procedure for simultaneous determination of ribulose-1,5-bisphosphate carboxylase and oxygenase activities. Plant Physiol 67:237–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kane HJ, Viil J, Entsch B, Paul K, Morell MK, Andrews TJ (1994) An improved method for measuring the CO2/O2 specificity of ribulosebisphosphate carboxylase-oxygenase. Funct Plant Biol 21:449–461

    CAS  Google Scholar 

  • Kimball BA, Idso SB, Johnson S, Rillig MC (2007) Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Glob Change Biol 13:2171–2183

    Google Scholar 

  • Knaff DB (1996) Ferredoxin and ferredoxin-dependent enzymes. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions, vol 4., Advances in Photosynthesis. Kluwer Academic, Dordrecht, pp 333–361

    Google Scholar 

  • Korner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    CAS  PubMed  Google Scholar 

  • Laing WA, Christeller JT (1976) A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem J 159:563–570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lekshmy S, Jain V, Khetarpal S, Pandey R (2013) Inhibition of nitrate uptake and assimilation in wheat seedlings grown under elevated CO2. Indian J Plant Physiol 18:23–29

    Google Scholar 

  • Lilley RMC, Wang XQ, Krausz E, Andrews TJ (2003) Complete spectra of the far-red chemiluminescence of the oxygenase reaction of Mn2+-activated ribulose-bisphosphate carboxylase/oxygenase establish excited Mn2+ as the source. J Biol Chem 278:16488–16493

    CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    CAS  PubMed  Google Scholar 

  • Luque-Almagro VM, Gates AJ, Moreno-Vivián C, Ferguson SJ, Richardson DJ, Roldán M (2011) Bacterial nitrate assimilation: gene distribution and regulation. Biochem Soc Trans 39:1838–1843

    CAS  PubMed  Google Scholar 

  • Matsumura H et al (2012) Crystal structure of rice Rubisco and implications for activation induced by positive effectors NADPH and 6-phosphogluconate. J Mol Biol 422:75–86

    CAS  PubMed  Google Scholar 

  • Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M (2001) Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant, Cell Environ 24:1119–1137

    CAS  Google Scholar 

  • Maynard PN, Barker AV, Minotti PL, Peck NH (1976) Nitrate accumulation in vegetables. Adv Agron 28:71–119

    CAS  Google Scholar 

  • McCurry SD, Pierce J, Tolbert NE, Orme-Johnson WH (1981) On the mechanism of effector-mediated activation of ribulose bisphosphate carboxylase/oxygenase. J Biol Chem 256:6623–6628

    CAS  PubMed  Google Scholar 

  • McIntyre GI (1997) The role of nitrate in the osmotic and nutritional control of plant development. Aust J Plant Physiol 24:103–118

    CAS  Google Scholar 

  • Miziorko HM, Sealy RC (1980) Characterization of the ribulosebisphosphate carboxylase-carbon dioxide-divalent cation-carboxypentitol bisphosphate complex. Biochemistry 19:1167–1171. doi:10.1021/bi00547a020

    CAS  PubMed  Google Scholar 

  • Miziorko HM, Sealy RC (1984) Electron spin resonance studies of ribulose bisphosphate carboxylase: identification of activator cation ligands. Biochemistry 23:479–485

    CAS  PubMed  Google Scholar 

  • Moroney J, Jungnick N, DiMario R, Longstreth D (2013) Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions. Photosynth Res 117:121–131. doi:10.1007/s11120-013-9865-7

    CAS  PubMed  Google Scholar 

  • Maeda S-i, Konishi M, Yanagisawa S, Omata T (2014) Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant Cell Physiol 55:1311–1324. doi:10.1093/pcp/pcu075

    CAS  PubMed  Google Scholar 

  • Myers SS et al (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142. doi:10.1038/nature13179

    CAS  PubMed  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373. doi:10.1073/pnas.1006463107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohashi Y et al (2011) Regulation of nitrate assimilation in cyanobacteria. J Exp Bot 62:1411–1424. doi:10.1093/jxb/erq427

    CAS  PubMed  Google Scholar 

  • Oliva M, Safont VS, Andres J, Tapia O (2001) Transition structures for D-ribulose-1,5-bisphosphate carboxylase/oxygenase-catalyzed oxygenation chemistry: role of carbamylated lysine in a model magnesium coordination sphere. J Phys Chem A 105:4726–4736

    CAS  Google Scholar 

  • Osborne CP, Beerling DJ (2006) Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Philos Trans R Soc B Biol Sci 361:173–194. doi:10.1098/rstb.2005.1737

    Google Scholar 

  • Parry MAJ, Andralojc PJ, Mitchell RAC, Madgwick PJ, Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    CAS  PubMed  Google Scholar 

  • Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64:717–730. doi:10.1093/jxb/ers336

    CAS  PubMed  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    CAS  PubMed  Google Scholar 

  • Pierce J, Reddy GS (1986) The sites for catalysis and activation of ribulosebisphosphate carboxylase share a common domain. Arch Biochem Biophys 245:483–493

    CAS  PubMed  Google Scholar 

  • Pleijel H, Uddling J (2012) Yield vs. quality trade-offs for wheat in response to carbon dioxide and ozone. Glob Change Biol 18:596–605. doi:10.1111/j.1365-2486.2011.2489.x

    Google Scholar 

  • Quesada A, Gomez-Garcia I, Fernandez E (2000) Involvement of chloroplast and mitochondria redox valves in nitrate assimilation. Trends Plant Sci 5:463–464

    CAS  PubMed  Google Scholar 

  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci USA 101:11506–11510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raghavendra AS, Carrillo NJ, Vallejos RH (1981) Differential modulation of carboxylase and oxygenase activities of ribulose 1, 5-bisphosphate carboxylase/oxygenase released from freshly ruptured spinach chloroplasts. Plant Cell Physiol 22:1113–1117

    CAS  Google Scholar 

  • Rasse DP, Peresta G, Drake BG (2005) Seventeen years of elevated CO2 exposure in a Chesapeake Bay Wetland: sustained but contrasting responses of plant growth and CO2 uptake. Glob Change Biol 11:369–377

    Google Scholar 

  • Rathnam CKM (1978) Malate and dihydroxyacetone phosphate-dependent nitrate reduction in spinach leaf protoplasts. Plant Physiol 62:220–223. doi:10.1104/pp.62.2.220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reich PB et al (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    CAS  PubMed  Google Scholar 

  • Robinson JM (1987) Interactions of carbon and nitrogen metabolism in photosynthetic and non-photosynthetic tissues of higher plants: metabolic pathways and controls. In: Newman DW, Stuart KG (eds) Models in Plant Physiology and Biochemistry, vol 1. CRC Press, Boca Raton, pp 25–35

  • Robinson JM (1988) Spinach leaf chloroplast CO2 and NO2 photoassimilations do not compete for photogenerated reductant manipulation of reductant levels by quantum flux density titrations. Plant Physiol 88:1373–1380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson JM, Gibbs M (1982) Hydrogen peroxide synthesis in isolated spinach chloroplast lamellae: an analysis of the Mehler reaction in the presence of NADP reduction and ATP formation. Plant Physiol 70:1249–1254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sage RF (2002) Variation in the k cat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53:609–620

    CAS  PubMed  Google Scholar 

  • Sage RF, Li M, Monson RK (1999) The taxonomic distribution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 Plant Biology. Academic Press, San Diego, pp 551–584

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    CAS  PubMed  Google Scholar 

  • Scheibe R, Dietz KJ (2012) Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant, Cell Environ 35:202–216. doi:10.1111/j.1365-3040.2011.02319.x

    CAS  Google Scholar 

  • Schneidereit J, Hausler RE, Fiene G, Kaiser WM, Weber APM (2006) Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. Plant J 45:206–224

    CAS  PubMed  Google Scholar 

  • Searles PS, Bloom AJ (2003) Nitrate photoassimilation in tomato leaves under short-term exposure to elevated carbon dioxide and low oxygen. Plant, Cell Environ 26:1247–1255

    CAS  Google Scholar 

  • Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73:147–152

    CAS  Google Scholar 

  • Skillman JB (2008) Quantum yield variation across the three pathways of photosynthesis: not yet out of the dark. J Exp Bot 59:1647–1661. doi:10.1093/Jxb/Ern029

    CAS  PubMed  Google Scholar 

  • Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C3 and C4 vegetation: carbon cycle implications. Glob Biogeochem Cycles 17:6-1–6-14

    Google Scholar 

  • Studer RA, Christin P-A, Williams MA, Orengo CA (2014) Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci 111:2223–2228. doi:10.1073/pnas.1310811111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swedish Energy Agency (2003) Artificial photosynthesis. Eskilstuna, Sweden

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant Physiology, 5th edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Talhelm AF et al (2014) Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Glob Change Biol 20:2492–2504. doi:10.1111/gcb.12564

    Google Scholar 

  • Taniguchi M, Miyake H (2012) Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. Curr Opin Plant Biol 15:252–260. doi:10.1016/j.pbi.2012.01.014

    CAS  PubMed  Google Scholar 

  • Tapia O, Andrés J (1992) Towards an explanation of carboxylation/oxygenation bifunctionality in Rubisco. Transition structure for the carboxylation reaction of 2,3,4-pentanetriol. Mol Eng 2:37–41. doi:10.1007/BF00999521

    CAS  Google Scholar 

  • Taub DR, Wang XZ (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol 50:1365–1374. doi:10.1111/j.1744-7909.2008.00754.x

    CAS  PubMed  Google Scholar 

  • Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tolbert NE (1994) Role of photosynthesis and photorespiration in regulating CO2 and O2. In: Tolbert NE, Preiss J (eds) Regulation of CO2 and O2 by Photosynthetic Carbon Metabolism. Oxford University Press, New York, pp 8–33

    Google Scholar 

  • Van Niel CB, Allen MB, Wright BE (1953) On the photochemical reduction of nitrate by algae. Biochim Biophys Acta 12:67–74. doi:10.1016/0006-3002(53)90124-3

    Google Scholar 

  • Veen BW, Kleinendorst A (1986) The role of nitrate in osmoregulation of Italian ryegrass. Plant Soil 91:433–436. doi:10.1007/bf02198139

    CAS  Google Scholar 

  • von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672

    Google Scholar 

  • Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15:713–722. doi:10.1111/j.1438-8677.2012.00710.x

    CAS  PubMed  Google Scholar 

  • Walker BJ, Strand DD, Kramer DM, Cousins AB (2014) The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation. Plant Physiol 165:453–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warburg O, Negelein E (1920) Über die Reduktion der Salpetersäure in grünen Zellen. Biochem Z 110:66–115

    CAS  Google Scholar 

  • Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme Rubisco. Plant Physiol 155:27–35. doi:10.1104/pp.110.164814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wildner GF, Henkel J (1979) The effect of divalent metal ions on the activity of Mg++ depleted ribulose-1, 5-bisphosphate oxygenase. Planta 146:223–228

    CAS  PubMed  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond Ser B Biol Sci 355:1517–1529

    CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    CAS  PubMed  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261. doi:10.1146/annurev-arplant-042809-112206

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by NSF IOS-13-58675. We thank J. Clark Lagarias and George H. Lorimer for their insights about redox reactions and the reviewers for their suggestions.

Conflicts of interest

The author has no conflicts of interest with regards to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold J. Bloom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloom, A.J. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth Res 123, 117–128 (2015). https://doi.org/10.1007/s11120-014-0056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0056-y

Keywords

Navigation