Skip to main content
Log in

Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chlorophyll (Chl) is an essential component of the photosynthetic apparatus. Embedded into Chl-binding proteins, Chl molecules play a central role in light harvesting and charge separation within the photosystems. It is critical for the photosynthetic cell to not only ensure the synthesis of a sufficient amount of new Chl-binding proteins but also avoids any misbalance between apoprotein synthesis and the formation of potentially phototoxic Chl molecules. According to the available data, Chl-binding proteins are translated on membrane bound ribosomes and their integration into the membrane is provided by the SecYEG/Alb3 translocon machinery. It appears that the insertion of Chl molecules into growing polypeptide is a prerequisite for the correct folding and finishing of Chl-binding protein synthesis. Although the Chl biosynthetic pathway is fairly well-described on the level of enzymatic steps, a link between Chl biosynthesis and the synthesis of apoproteins remains elusive. In this review, I summarize the current knowledge about this issue putting emphasis on protein–protein interactions. I present a model of the Chl biosynthetic pathway organized into a multi-enzymatic complex and physically attached to the SecYEG/Alb3 translocon. Localization of this hypothetical large biosynthetic centre in the cyanobacterial cell is also discussed as well as regulatory mechanisms coordinating the rate of Chl and apoprotein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

Chl-protein:

Chlorophyll-binding protein

PSI:

Photosystems I

PSII:

Photosystems II

Synechocystis :

Synechocystis PCC 6803

GluTR:

Glutamyl-tRNA-reductase

GluRS:

Glutamyl-tRNA-synthetase

POR:

Light-dependent protochlorophyllide oxidoreductase

Chlide:

Chlorophyllide

References

  • Adhikari ND, Froehlich JE, Strand DD, Buck SM, Kramer DM, Larkin RM (2011) GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-chelatase and promote chlorophyll biosynthesis in Arabidopsis. Plant Cell 23:1449–1467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asakura Y, Kikuchi S, Nakai M (2008) Non-identical contributions of two membrane-bound cpSRP components, cpFtsY and Alb3, to thylakoid biogenesis. Plant J 56:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Bakshi S, Siryaporn A, Goulian M, Weisshaar JC (2012) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85:21–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chua NH, Blobel G, Siekevitz P, Palade GE (1976) Periodic variations in the ratio of free to thylakoid-bound chloroplast ribosomes during the cell cycle of Chlamydomonas reinhardtii. J Cell Biol 71:497–514

    Article  CAS  PubMed  Google Scholar 

  • Czarnecki O, Grimm B (2012) Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J Exp Bot 63:1675–1687

    Article  CAS  PubMed  Google Scholar 

  • Dalbey RE, Wang P, Kuhn A (2011) Assembly of bacterial inner membrane proteins. Annu Rev Biochem 80:161–187

    Article  CAS  PubMed  Google Scholar 

  • Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP, Hunter CN (2005) Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44:7603–7612

    Article  CAS  PubMed  Google Scholar 

  • Dolganov NA, Bhaya D, Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 92:636–640

    Article  CAS  PubMed  Google Scholar 

  • Domanskii V, Rassadina V, Gus-Mayer S, Wanner G, Schoch S, Rudiger W (2003) Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves. Planta 216:475–483

    CAS  PubMed  Google Scholar 

  • Dünschede B, Bals T, Funke S, Schünemann D (2011) Interaction studies between the chloroplast signal recognition particle subunit cpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3 protein. J Biol Chem 286:35187–35195

    Article  PubMed  Google Scholar 

  • Eichacker LA, Helfrich M, Rüdiger W, Müller B (1996) Stabilization of chlorophyll a-binding apoproteins P700, CP47, CP43, D2, and D1 by chlorophyll a or Zn-pheophytin a. J Biol Chem 271:32174–32179

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Murakami A, Ohki K (1990) Regulation of the stoichiometry of thylakoid components in the photosynthetic system of cyanophytes: model experiments showing that control of the synthesis or supply of Chl a can change the stoichiometric relationship between the two photosystems. Plant Cell Physiol 31:145–153

    CAS  Google Scholar 

  • Göhre V, Ossenbühl F, Crèvecoeur M, Eichacker LA, Rochaix JD (2006) One of two alb3 proteins is essential for the assembly of the photosystems and for cell survival in Chlamydomonas. Plant Cell 8:1454–1466

    Article  Google Scholar 

  • Harris CL (1987) An aminoacyl-tRNA synthetase complex in Escherichia coli. J Bacteriol 169:2718–2723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(Suppl):C47–C52

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Prieto MA, Tibiletti T, Abasova L, Kirilovsky D, Funk C (2011) The small CAB-like proteins of the cyanobacterium Synechocystis sp. PCC 6803: their involvement in chlorophyll biogenesis for photosystem II. Biochim Biophys Acta 1807:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Hihara Y, Sonoike K, Ikeuchi M (1998) A novel gene, pmgA, specifically regulates photosystem stoichiometry in the cyanobacterium Synechocystis species PCC 6803 in response to high light. Plant Physiol 117:1205–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hollingshead S, Kopečná J, Jackson PJ, Canniffe DP, Davison PA, Dickman MJ, Sobotka R, Hunter CN (2012) Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. J Biol Chem 287:27823–27833

    Article  CAS  PubMed  Google Scholar 

  • Jahn D (1992) Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during the tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas reinhardtii. FEBS Lett 314:77–80

    Article  CAS  PubMed  Google Scholar 

  • Kauss D, Bischof S, Steiner S, Apel K, Meskauskiene R (2012) FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the Mg++-branch of this pathway. FEBS Lett 586:211–216

    Article  CAS  PubMed  Google Scholar 

  • Khrouchtchova A, Hansson M, Paakkarinen V, Vainonen JP, Zhang S, Jensen PE, Scheller HV, Vener AV, Aro EM, Haldrup A (2005) A previously found thylakoid membrane protein of 14 kDa (TMP14) is a novel subunit of plant photosystem I and is designated PSI-P. FEBS Lett 579:4808–4812

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Klein PG, Mullet JE (1994) Synthesis and turnover of photosystem II reaction center protein D1. Ribosome pausing increases during chloroplast development. J Biol Chem 269:17918–17923

    CAS  PubMed  Google Scholar 

  • Klostermann E, Droste Gen Helling I, Carde JP, Schünemann D (2002) The thylakoid membrane protein ALB3 associates with the cpSecY-translocase in Arabidopsis thaliana. Biochem J 368:777–781

    Article  CAS  PubMed  Google Scholar 

  • Kohler R, Boehringer D, Greber B, Bingel-Erlenmeyer R, Collinson I, Schaffitzel C, Ban N (2009) YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol Cell 34:344–353

    Article  CAS  PubMed  Google Scholar 

  • Komenda J, Masojídek J (1995) Functional and structural changes of the photosystem II complex induced by high irradiance in cyanobacterial cells. Eur J Biochem 233:677–682

    Article  CAS  PubMed  Google Scholar 

  • Komenda J, Sobotka R, Nixon PJ (2012) Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol 15:245–251

    Article  CAS  PubMed  Google Scholar 

  • Kopečná J, Komenda J, Bučinská L, Sobotka R (2012) Long-term acclimation of the cyanobacterium Synechocystis PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric PSI. Plant Physiol 160:2239–2250

    Article  PubMed Central  PubMed  Google Scholar 

  • Kopečná J, Sobotka R, Komenda J (2013) Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletionof photosystem I and photosystem II in the cyanobacterium Synechocystis PCC 6803. Planta 237:497–508

    Google Scholar 

  • Kyriacou SV, Deutscher MP (2008) An important role for the multienzyme aminoacyl-tRNA synthetase complex in mammalian translation and cell growth. Mol Cell 29:419–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906

    Article  CAS  PubMed  Google Scholar 

  • Lüer C, Schauer S, Möbius K, Schulze J, Schubert WD, Heinz DW, Jahn D, Moser J (2005) Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. J Biol Chem 280:18568–18572

    Article  PubMed  Google Scholar 

  • Luo T, Fan T, Liu Y, Rothbart M, Yu J, Zhou S, Grimm B, Luo M (2012) Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol 159:118–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masoumi A, Heinemann IU, Rohde M, Koch M, Jahn M, Jahn D (2008) Complex formation between protoporphyrinogen IX oxidase and ferrochelatase during haem biosynthesis in Thermosynechococcus elongatus. Microbiology 154:3707–3714

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Fujita Y (2008) Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 10:1131–1149

    Article  Google Scholar 

  • Moore M, Goforth RL, Mori H, Henry R (2003) Functional interaction of chloroplast SRP/FtsY with the ALB3 translocase in thylakoids: substrate not required. J Cell Biol 162:1245–1254

    Article  CAS  PubMed  Google Scholar 

  • Müller B, Eichacker LA (1999) Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. Plant Cell 11:2365–2377

    PubMed Central  PubMed  Google Scholar 

  • Mullet JE, Klein PG, Klein RR (1990) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability. Proc Natl Acad Sci USA 87:4038–4042

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu M, Sonoike K, Hihara Y (2009) Mechanism of downregulation of photosystem I content under high-light conditions in the cyanobacterium synechocystis sp. PCC 6803. Microbiology 155:989–996

    Article  CAS  PubMed  Google Scholar 

  • Nagamori S, Smirnova IN, Kaback HR (2004) Role of YidC in folding of polytopic membrane proteins. J Cell Biol 165:53–62

    Article  CAS  PubMed  Google Scholar 

  • Neilson JA, Durnford DG (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosyn Res 106:57–71

    Article  CAS  PubMed  Google Scholar 

  • Nilsson R, van Wijk KJ (2002) Transient interaction of cpSRP54 with elongating nascent chains of the chloroplast-encoded D1 protein; ‘cpSRP54 caught in the act’. FEBS Lett 524:127–133

    Article  CAS  PubMed  Google Scholar 

  • Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16

    Article  CAS  PubMed  Google Scholar 

  • Nogaj LA, Beale SI (2005) Physical and kinetic interactions between glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase of Chlamydomonas reinhardtii. J Biol Chem 280:24301–24307

    Article  CAS  PubMed  Google Scholar 

  • Norris V (1995) Hypothesis: chromosome separation in Escherichia coli involves autocatalytic gene expression, transertion and membrane-domain formation. Mol Microbiol 16:1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M Jr, Skarstad K (2007) Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 71:230–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nowaczyk MM, Hebeler R, Schlodder E, Meyer HE, Warscheid B, Rögner M (2006) Psb27, a cyanobacterial lipoprotein, is involved in the repair cycle of photosystem II. Plant Cell 18:3121–3131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olmedo-Verd E, Santamaría-Gómez J, Ochoa de Alda JA, Ribas de Pouplana L, Luque I (2011) Membrane anchoring of aminoacyl-tRNA synthetases by convergent acquisition of a novel protein domain. J Biol Chem 286:41057–41068

    Article  CAS  PubMed  Google Scholar 

  • Osanai T, Imashimizu M, Seki A, Sato S, Tabata S, Imamura S, Asayama M, Ikeuchi M, Tanaka K (2009) ChlH, the H subunit of the Mg-chelatase, is an anti-sigma factor for SigE in Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 106:6860–6865

    Article  CAS  PubMed  Google Scholar 

  • Ossenbühl F, Inaba-Sulpice M, Meurer J, Soll J, Eichacker LA (2006) The Synechocystis sp. PCC 6803 Oxa1 homolog is essential for membrane integration of reaction center precursor protein pD1. Plant Cell 18:2236–2246

    Article  PubMed Central  PubMed  Google Scholar 

  • Paravisi S, Fumagalli G, Riva M, Morandi P, Morosi R, Konarev PV, Petoukhov MV, Bernier S, Chênevert R, Svergun DI, Curti B, Vanoni MA (2009) Kinetic and mechanistic characterization of Mycobacterium tuberculosis glutamyl-tRNA synthetase and determination of its oligomeric structure in solution. FEBS J 276:1398–1417

    Article  CAS  PubMed  Google Scholar 

  • Pasch JC, Nickelsen J, Schünemann D (2005) The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl Microbiol Biotechnol 69:440–447

    Article  CAS  PubMed  Google Scholar 

  • Pisareva T, Kwon J, Oh J, Kim S, Ge C, Wieslander A, Choi JS, Norling B (2011) Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J Proteome Res 10:3617–3631

    Article  CAS  PubMed  Google Scholar 

  • Promnares K, Komenda J, Bumba L, Nebesarova J, Vacha F, Tichy M (2006) Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J Biol Chem 281:32705–32713

    Article  CAS  PubMed  Google Scholar 

  • Renger G, Holzwart AR (2005) Primary electron transfer. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: The light-driven water: plastoquinone oxidoreductase, vol 22., Advances in photosynthesis and respiration series. Springer, Dordrecht, pp 139–175

    Google Scholar 

  • Richter A, Peter E, Pörs Y, Lorenzen S, Grimm B, Czarnecki O (2010) Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Plant Cell Physiol 51:670–681

    Article  CAS  PubMed  Google Scholar 

  • Rüdiger W, Böhm S, Helfrich M, Schulz S, Schoch S (2005) Enzymes of the last steps of chlorophyll biosynthesis: modification of the substrate structure helps to understand the topology of the active centers. Biochemistry 44:10864–10872

    Article  PubMed  Google Scholar 

  • Schottkowski M, Peters M, Zhan Y, Rifai O, Zhang Y, Zerges W (2012) Biogenic membranes of the chloroplast in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 109:19286–19291

    Article  CAS  PubMed  Google Scholar 

  • Shepherd M, McLean S, Hunter CN (2005) Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis. FEBS J 272:4532–4539

    Article  CAS  PubMed  Google Scholar 

  • Shlyk AA (1971) Biosynthesis of chlorophyll b. Annu Rev Plant Physiol 22:169–184

    Article  CAS  Google Scholar 

  • Sinha RK, Komenda J, Knoppová J, Sedlářová M, Pospíšil P (2012) Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Environ 35:806–818

    Article  CAS  PubMed  Google Scholar 

  • Sobotka R, Komenda J, Bumba L, Tichy M (2005) Photosystem II assembly in CP47 mutant of Synechocystis sp. PCC 6803 is dependent on the level of chlorophyll precursors regulated by ferrochelatase. J Biol Chem 280:31595–31602

    Article  CAS  PubMed  Google Scholar 

  • Sobotka R, Dühring U, Komenda J, Peter E, Gardian Z, Tichý M, Grimm B, Wilde A (2008a) Importance of the cyanobacterial Gun4 protein for chlorophyll metabolism and assembly of photosynthetic complexes. J Biol Chem 283:25794–25802

    Article  CAS  PubMed  Google Scholar 

  • Sobotka R, McLean S, Zuberova M, Hunter CN, Tichy M (2008b) The C-terminal extension of ferrochelatase is critical for enzyme activity and for functioning of the tetrapyrrole pathway in Synechocystis strain PCC 6803. J Bacteriol 190:2086–2095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sobotka R, Tichy M, Wilde A, Hunter CN (2011) Functional assignments for the carboxyl-terminal domains of the ferrochelatase from Synechocystis PCC 6803: the CAB domain plays a regulatory role, and region II is essential for catalysis. Plant Physiol 155:1735–1747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sozer O, Komenda J, Ughy B, Domonkos I, Laczkó-Dobos H, Malec P, Gombos Z, Kis M (2010) Involvement of carotenoids in the synthesis and assembly of protein subunits of photosynthetic reaction centers of Synechocystis sp. PCC 6803. Plant Cell Physiol 51:823–835

    Article  CAS  PubMed  Google Scholar 

  • Spence E, Bailey S, Nenninger A, Møller SG, Robinson C (2004) A homolog of Albino3/OxaI is essential for thylakoid biogenesis in the cyanobacterium Synechocystis sp. PCC6803. J Biol Chem 279:55792–55800

    Article  CAS  PubMed  Google Scholar 

  • Stengel A, Gügel IL, Hilger D, Rengstl B, Jung H, Nickelsen J (2012) Initial steps of photosystem II de novo assembly and preloading with manganese take place in biogenesis centers in Synechocystis. Plant Cell 24:660–675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sven G, Eva R, Uwe K, Schneider D (2008) A conserved structure and function of the YidC homologous protein Slr1471 from Synechocystis sp. PCC 6803. J Microbiol Biotechnol 18:1090–1094

    PubMed  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  CAS  PubMed  Google Scholar 

  • Tyystjärvi T, Herranen M, Aro EM (2001) Regulation of translation elongation in cyanobacteria: membrane targeting of the ribosome nascent-chain complexes controls the synthesis of D1 protein. Mol Microbiol 40:476–484

    Article  PubMed  Google Scholar 

  • Tzvetkova-Chevolleau T, Franck F, Alawady AE, Dall’Osto L, Carrière F, Bassi R, Grimm B, Nussaume L, Havaux M (2007) The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant J 50:795–809

    Article  CAS  PubMed  Google Scholar 

  • Vavilin D, Vermaas WFJ (2007) Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767:920–929

    Article  CAS  PubMed  Google Scholar 

  • Vavilin D, Brune DC, Vermaas WFJ (2005) 15N-labeling to determine chlorophyll synthesis and degradation in Synechocystis sp. PCC 6803 strains lacking one or both photosystems. Biochim Biophys Acta 1708:91–101

    Article  CAS  PubMed  Google Scholar 

  • Vavilin D, Yao D, Vermaas WF (2007) Small Cab-like proteins retard degradation of photosystem II-associated chlorophyll in Synechocystis sp. PCC 6803: kinetic analysis of pigment labeling with 15N and 13C. J Biol Chem 282:37660–37668

    Article  CAS  PubMed  Google Scholar 

  • Welte T, Kudva R, Kuhn P, Sturm L, Braig D, Müller M, Warscheid B, Drepper F, Koch HG (2012) Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol Biol Cell 23:464–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woldringh CL (2002) The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol 45:17–29

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Nomata J, Fujita Y (2006) Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiol 142:911–922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao DC, Brune DC, Vavilin D, Vermaas WFJ (2012) Photosystem II component lifetimes in the cyanobacterium Synechocystis sp. strain PCC 6803: small Cab-like proteins stabilize biosynthesis intermediates and affect early steps in chlorophyll synthesis. J Biol Chem 287:682–692

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Paakkarinen V, Suorsa M, Aro EM (2001) A SecY homologue is involved in chloroplast-encoded D1 protein biogenesis. J Biol Chem 276:37809–37814

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to Prof. Josef Komenda for stimulating scientific discussion and Jason Dean for reading the manuscript. I acknowledge the financial support from projects Algatech (CZ.1.05/2.1.00/03.0110) and RVO61388971 and from project P501/10/1000 of the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Sobotka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobotka, R. Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria. Photosynth Res 119, 223–232 (2014). https://doi.org/10.1007/s11120-013-9797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9797-2

Keywords

Navigation