Skip to main content
Log in

Deriving fluorometer-specific values of relative PSI fluorescence intensity from quenching of F 0 fluorescence in leaves of Arabidopsis thaliana and Zea mays

  • Emerging Techniques
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The effect of stepwise increments of red light intensities on pulse-amplitude modulated (PAM) chlorophyll (Chl) fluorescence from leaves of A. thaliana and Z. mays was investigated. Minimum and maximum fluorescence were measured before illumination (F 0 and F M, respectively) and at the end of each light step (\( F^{\prime}_{0} \) and \( F^{\prime}_{\text{M}} \), respectively). Calculated \( F^{\prime}_{0} \) values derived from F 0, F M and \( F^{\prime}_{\text{M}} \) fluorescence according to Oxborough and Baker (1997) were lower than the corresponding measured \( F^{\prime}_{0} \) values. Based on the concept that calculated \( F^{\prime}_{0} \) values are under-estimated because the underlying theory ignores PSI fluorescence, a method was devised to gain relative PSI fluorescence intensities from differences between calculated and measured \( F^{\prime}_{0} \). This method yields fluorometer-specific PSI data as its input data (F 0, F M, \( F^{\prime}_{0} \) and \( F^{\prime}_{\text{M}} \)) depend solely on the spectral properties of the fluorometer used. Under the present conditions, the PSI contribution to F 0 fluorescence was 0.24 in A. thaliana and it was independent on the light acclimation status; the corresponding value was 0.50 in Z. mays. Correction for PSI fluorescence affected Z. mays most: the linear relationship between PSI and PSII photochemical yields was clearly shifted toward the one-to-one proportionality line and maximum electron transport was increased by 50 %. Further, correction for PSI fluorescence increased the PSII reaction center-specific parameter, 1/F 0 − 1/F M, up to 50 % in A. thaliana and up to 400 % in Z. mays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ϕ PSII :

Effective yield for PSII photochemistry

Chl a :

Chlorophyll a

Chl b :

Chlorophyll b

ETR:

Electron transport rate

F 0 :

Minimum fluorescence intensity in the dark-acclimated state

\( F^{\prime}_{0} \) :

Minimum fluorescence intensity in the light-acclimated state

F1 :

Photosystem I fluorescence intensity

F M :

Maximum fluorescence intensity in the dark-acclimated state

\( F^{\prime}_{\text{M}} \) :

Maximum fluorescence intensity in the light-acclimated state

f RC2 :

PSII reaction center-specific factor

F V/F M :

Maximum yield for primary photochemistry of PSII

GH:

Green house-grown

HL:

High-light acclimated

LL:

Low-light grown

PPFD:

Photosynthetic photon flux density

PSI:

Photosystem I

PSII:

Photosystem II

References

  • Agati G, Cerovic ZG, Moya I (2000) The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: the role of the Photosystem I contribution to the 735 nm fluorescence band. Photochem Photobiol 72:75–84. doi:10.1562/0031-8655(2000)0720075TEODTU2.0.CO2

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organisation in sun/shade acclimation. Aust J Plant Physiol 15:11–26. doi:10.1071/PP9880011

    Article  Google Scholar 

  • Bailey A, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801

    Article  PubMed  CAS  Google Scholar 

  • Bailey S, Horton P, Walters RG (2004) Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218:793–802. doi:10.1007/s004250100556

    Article  PubMed  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. doi:10.1146/annurev.arplant.59.032607.092759

    Article  PubMed  CAS  Google Scholar 

  • Baker NR, Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, Springer, Dordrecht, pp 65–82

  • Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958. doi:10.1074/jbc.M606417200

    Article  PubMed  CAS  Google Scholar 

  • Bendall DS (1982) Photosynthetic cytochromes of oxygenic organisms. Biochim Biophys Acta 683:119–151

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185. doi:10.1007/BF00033159

    Article  CAS  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210. doi:10.1016/S1360-1385(02)02245-8

    Article  PubMed  CAS  Google Scholar 

  • Brody SS, Rabinowitch E (1957) Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125:555. doi:10.1126/science.125.3247.555

    Article  PubMed  CAS  Google Scholar 

  • Brugnoli E, Björkman O (1992) Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynth Res 32:23–35. doi:10.1007/BF00028795

    Article  CAS  Google Scholar 

  • Byrdin M, Rimke I, Schlodder E, Stehlik D, Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in Photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J 79:992–1007. doi:10.1016/S0006-3495(00)76353-3

    Article  PubMed  CAS  Google Scholar 

  • Cerovic ZG, Masdoumier G, Ben Ghozlen N, Latouche G (2012) A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol Plant. doi:10.1111/j.1399-3054.2012.01639.x

    PubMed  Google Scholar 

  • Chylla RA, Whitmarsh J (1989) Inactive photosystem II complexes in leaves. Turnover rate and quantitation. Plant Physiol 90:765–772

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Winter K, Krüger A, Czygan F-C (1989) Light response of CO2 assimilation, dissipation of excess excitation energy, and zeaxanthin content of sun and shade leaves. Plant Physiol 90:881–886

    Article  PubMed  CAS  Google Scholar 

  • Dominy PJ, Baker NR (1980) Salinity and in vitro ageing effects on primary photosynthetic processes of thylakoids isolated from Pisum sativum and Spinacia oleracea. J Exp Bot 31:58–74. doi:10.1093/jxb/31.1.58

    Article  Google Scholar 

  • Duysens LNM (1951) Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature 168:548–550

    Article  PubMed  CAS  Google Scholar 

  • Duysens LNM (1952) Transfer of excitation energy in photosynthesis. Ph D thesis, University of Utrecht, The Netherlands

  • Eichelmann H, Laisk A (2000) Cooperation of Photosystems II and I in leaves as analyzed by simultaneous measurements of chlorophyll fluorescence and transmittance at 800 nm. Plant Cell Physiol 41:138–147. doi:10.1093/pcp/41.2.138

    Article  PubMed  CAS  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215. doi:10.1016/0304-3800(88)90057-9

    Article  Google Scholar 

  • Fork DC, Amesz J (1969) Action spectra and energy transfer in photosynthesis. Annu Rev Plant Physiol 20:305–328. doi:10.1146/annurev.pp.20.060169.001513

    Google Scholar 

  • Foyer CH, Lelandais M, Harbinson J (1992) Control of the quantum efficiencies of Photosystems I and II, electron flow, and enzyme activation following dark-to-light transitions in pea leaves. Relationship between NADP/NADPH ratios and NADP-malate dehydrogenase activation state. Plant Physiol 99:979–986

    Article  PubMed  CAS  Google Scholar 

  • Franck F, Juneau P, Popovic R (2002) Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim Biophys Acta Bioenergetics 1556:239–246. doi:0.1016/S0005-2728(02)00366-3

    Article  CAS  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  • Genty B, Wonders J, Baker NR (1990) Non-photochemical quenching of F0 in leaves is emission wavelength dependent. Consequences for quenching analysis and its interpretation. Photosynth Res 26:133–139. doi:10.1007/BF00047085

    Article  CAS  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714. doi:10.1146/annurev.arplant.47.1.685

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C, Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6:301–305. doi:10.1016/S1360-1385(01)01953-7

    Article  PubMed  CAS  Google Scholar 

  • Harbinson J, Hedley CL (1989) The kinetics of P-700+ reduction in leaves: a novel in situ probe of thylakoid functioning. Plant Cell Environ 12:357–369. doi:10.1111/j.1365-3040.1989.tb01952.x

    Article  CAS  Google Scholar 

  • Havaux M, Strasser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27:41–55. doi:10.1007/BF00029975

    Article  CAS  Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curve in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739. doi:10.1111/j.0022-3646.1993.00729.x

    Article  Google Scholar 

  • Herlory O, Richard P, Blanchard GF (2007) Methodology of light response curves: application of chlorophyll fluorescence to microphytobenthic biofilms. Mar Biol 153:91–101. doi:10.1007/s00227-007-0787-9

    Article  CAS  Google Scholar 

  • Keren N, Berg A, van Kan PJM, Levanon H, Ohad I (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA 94:1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Kingston-Smith AH, Harbinson J, Foyer C (1999) Acclimation of photosynthesis, H2O2 content and antioxidants in maize (Zea mays) grown at sub-optimal temperatures. Plant Cell Environ 22:1071–1083. doi:10.1046/j.1365-3040.1999.00469.x

    Article  CAS  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115. doi:10.1016/0005-2728(75)90209-1

    Article  PubMed  CAS  Google Scholar 

  • Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268. doi:10.1007/BF01089043

    Article  CAS  Google Scholar 

  • Kolber ZS, Prázil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106. doi:10.1016/S0005-2728(98)00135-2

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163. doi:10.1023/A:1006212014787

    Article  CAS  Google Scholar 

  • Krause GH, Jahns P (2004) Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. A signature of photosynthesis. Springer, Berlin, pp 463–495

  • Kubien DS, Sage RF (2004) Dynamic photo-inhibition and carbon gain in a C4 and a C3 grass native to high latitudes. Plant Cell Environ 27:1424–1435. doi:10.1111/j.1365-3040.2004.01246.x

    Article  Google Scholar 

  • Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674. doi:10.1111/j.1469-8137.2007.02139.x

    Article  PubMed  Google Scholar 

  • Laisk A (2000) Chlorophyll a fluorescence and 800 nm absorbance changes as tools for probing leaf photosynthesis. Bull Soc Roy Sci Liège 69:111–135

    CAS  Google Scholar 

  • Latimer P, Bannister TT, Rabinowitch E (1956) Quantum yields of fluorescence of plant pigments. Science 124:585–586. doi:10.1126/science.124.3222.585

    Article  PubMed  CAS  Google Scholar 

  • Lavergne J, Leci E (1993) Properties of inactive Photosystem II centers. Photosynth Res 35:323–343. doi:10.1007/BF00016563

    Article  CAS  Google Scholar 

  • Lavergne J, Trissl H-W (1995) Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68:2474–2492. doi:10.1016/S0006-3495(95)80429-7

    Article  PubMed  CAS  Google Scholar 

  • Leitsch J, Schnettger B, Critchley C, Krause GH (1994) Two mechanisms of recovery from photoinhibition in vivo: reactivation of photosystem II related and unrelated to D1-protein turnover. Planta 194:15–21. doi:10.1007/BF00201029

    Article  CAS  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135. doi:10.1016/S1360-1385(99)01387-4

    Article  PubMed  Google Scholar 

  • Nilkens M, Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta 1797:466–475. doi:10.1016/j.bbabio.2010.01.001

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460. doi:10.1016/S1369-5266(00)00113-8

    Article  PubMed  CAS  Google Scholar 

  • Ott T, Clarke J, Birks K, Johnson G (1999) Regulation of the photosynthetic electron transport chain. Planta 209:250–258. doi:10.1007/s004250050629

    Article  PubMed  CAS  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—calculation of qP and Fv/Fm without measuring Fo. Photosynth Res 54:135–142. doi:10.1023/A:1005936823310

    Article  CAS  Google Scholar 

  • Palombi L, Cecchi G, Lognoli D, Raimondi V, Toci G, Agati G (2011) A retrieval algorithm to evaluate the Photosystem I and Photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures. Photosynth Res 108:225–239. doi:10.1007/s11120-011-9678-5

    Article  PubMed  CAS  Google Scholar 

  • Park Y-I, Chow WS, Anderson JM (1995a) The quantum yield of photoinactivation of photosystem II in pea leaves is greater at low than high photon exposure. Plant Cell Physiol 36:1163–1167

    CAS  Google Scholar 

  • Park Y-I, Chow WS, Anderson JM (1995b) Light inactivation of functional photosystem II in leaves of peas grown in moderate light depends on photon exposure. Planta 196:401–411. doi:10.1007/BF00203636

    Article  CAS  Google Scholar 

  • Peterson RB, Sivak MN, Walker DA (1988) Relationship between steady-state fluorescence yield and photosynthetic efficiency in spinach leaf tissue. Plant Physiol 88:158–163. Doi:10.1104/pp.88.1.158

    Google Scholar 

  • Peterson RB, Oja V, Laisk A (2001) Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis. Photosynth Res 70:185–196. doi:10.1023/A:1017952500015

    Article  PubMed  CAS  Google Scholar 

  • Pfündel EE (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195. doi:10.1023/A:1006032804606

    Article  Google Scholar 

  • Pfündel EE (2003) Action of UV and visible radiation on chlorophyll fluorescence from dark-adapted grape leaves (Vitis vinifera L.). Photosynth Res 75:29–39. doi:10.1023/A:1022486925516

    Article  PubMed  Google Scholar 

  • Pfündel EE (2009) Deriving room temperature excitation spectra for photosystem I and photosystem II fluorescence in intact leaves from the dependence of FV/FM on excitation wavelength. Photosynth Res 100:163–177. doi:10.1007/s11120-009-9453-z

    Article  PubMed  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Rappaport F, Béala D, Joliot A, Joliot P (2007) On the advantages of using green light to study fluorescence yield changes in leaves. Biochim Biophys Acta Bioenergetics 1767:56–65. doi:10.1016/j.bbabio.2006.10.002

    Article  CAS  Google Scholar 

  • Roelofs TA, Lee C-H, Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem II α- and β-units. Biophys J 61:1147–1163. doi:10.1016/S0006-3495(92)81924-0

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Johnson MP (2009) Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth Res 99:173–183. doi:10.1007/s11120-008-9387-x

    Article  PubMed  CAS  Google Scholar 

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19:1637–1670. doi:10.1093/plankt/19.11.1637

    Article  CAS  Google Scholar 

  • Schlodder E, Çetin M, Byrdin M, Terekhova I, Karapetyan NV (2005) P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacterium Arthrospira platensis. Biochim Biophys Acta Bioenergetics 1706:53–67. doi:10.1016/j.bbabio.2004.08.009

    Article  CAS  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, The Netherlands, pp 279–319

  • Siebke K, von Caemmerer S, Badger M, Furbank RT (1997) Expressing an RbcS antisense gene in transgenic Flaveria bidentis leads to an increased quantum requirement for CO2 fixed in Photosystems I and II. Plant Physiol 115:1163–1174

    PubMed  CAS  Google Scholar 

  • Siefermann-Harms D (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim Biophys Acta 811:325–355

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transients on plants and cyanobacteria. Photochem Photobiol 61:32–42. doi:10.1111/j.1751-1097.1995.tb09240.x

    Article  CAS  Google Scholar 

  • Štroch M, Podolinsá J, Navrátil M, Špunda V (2005) Effects of different excitation and detection spectral regions on room temperature chlorophyll a fluorescence parameters. Photosynthetica 43:411–416. doi:10.1007/s11099-005-0065-3

    Article  Google Scholar 

  • Takahashi S, Bauwe H, Badger M (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of Photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol 144:487–494. doi:10.1104/pp.107.097253

    Article  PubMed  CAS  Google Scholar 

  • Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2007) The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light induced pmf. Biochim Biophys Acta 1767:1233–1244. doi:10.1016/j.bbabio.2007.07.006

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen M, Grieco M, Aro E-M (2011) Novel insights into plant light-harvesting complex II phosphorylation and ‘state transitions’. Trends Plant Sci 16:126–131. doi:10.1016/j.tplants.2010.11.006

    Article  PubMed  CAS  Google Scholar 

  • Trissl HW (1997) Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P700+: implications for the trapping mechanism. Photosynth Res 54:237–240. doi:10.1023/A:1005981016835

    Article  CAS  Google Scholar 

  • Trissl H-W, Gao Y, Wulf K (1993) Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. Biophys J 64:974–988. doi:10.1016/S0006-3495(93)81463-2

    Article  PubMed  CAS  Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T, Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65

    Article  CAS  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 2:147–150. doi:10.1007/BF00033156

    Article  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E-M, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89:1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Vavilin DV, Tyystjärvi E, Aro E-M (1998) Model for the fluorescence induction curve of photoinhibited thylakoids. Biophys J 75:503–512. doi:10.1016/S0006-3495(98)77539-3

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468. doi:10.1146/annurev.arplant.54.031902.135023

    Article  PubMed  CAS  Google Scholar 

  • Walters RG, Horton P (1991) Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynth Res 27:121–133. doi:10.1007/BF00033251

    Article  CAS  Google Scholar 

  • Walters RG, Horton P (1993) Theoretical assessment of alternative mechanisms for non-photochemical quenching of PS II fluorescence in barley leaves. Photosynth Res 36:119–139. doi:10.1007/BF00016277

    Article  CAS  Google Scholar 

  • Weber G, Teale FWJ (1957) Determination of the absolute quantum yield of fluorescent solutions. Trans Faraday Soc 53:646–655. doi:10.1039/TF9575300646

    Article  CAS  Google Scholar 

  • Weis E (1985) Chlorophyll fluorescence at 77 K in intact leaves: characterization of a technique to eliminate artifacts related to self-absorption. Photosynth Res 6:73–86. doi:10.1007/BF00029047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lars Nichelmann for providing seed and instructions on plant growth. We are grateful to Frank Reichel and Thomas Simon for skillful technical assistance. EP wishes to thank the Heinz Walz GmbH for supporting his research visit at Université Paris-Sud and Gabriel Cornic for fruitful discussions and for creating an inspiring research environment. We are grateful to Dr. Robert Porra for help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard E. Pfündel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfündel, E.E., Klughammer, C., Meister, A. et al. Deriving fluorometer-specific values of relative PSI fluorescence intensity from quenching of F 0 fluorescence in leaves of Arabidopsis thaliana and Zea mays . Photosynth Res 114, 189–206 (2013). https://doi.org/10.1007/s11120-012-9788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-012-9788-8

Keywords

Navigation