Skip to main content
Log in

Anisotropic circular dichroism signatures of oriented thylakoid membranes and lamellar aggregates of LHCII

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment–pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while “psi-type” CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face- and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra)molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an organization, leading to the discovery of a novel crystalline structure in macroaggregates of LHCII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACD:

Anisotropic circular dichroism

BBY:

Photosystem II-enriched grana membrane fragments, isolated according to Berthold, Babcock and Yocum

CD:

Circular dichroism

CDexc :

Excitonic circular dichroism

CDψ :

Psi-type circular dichroism

Chl:

Chlorophyll

LD:

Linear dichroism

LHCII:

Light-harvesting complex of Photosystem II

MCD:

Magnetic circular dichroism

PSI, PSII:

Photosystem I, II

STEM:

Scanning transmission electron microscopy

References

  • Abdourakhmanov IA, Ganago AO, Erokhin YE, Solovev AA, Chugunov VA (1979) Orientation and linear dichroism of the reaction centers from Rhodopseudomonas-sphaeroides R-26. Biochem Biophys Acta 546:183–186

    Article  PubMed  CAS  Google Scholar 

  • Barzda V, Mustárdy L, Garab G (1994) Size dependency of circular dichroism in macroaggregates of photosynthetic pigment–protein complexes. Biochemistry 33:10837–10841

    Article  PubMed  CAS  Google Scholar 

  • Barzda V, Istokovics A, Simidjiev I, Garab G (1996) Structural flexibility of chiral macroaggregates of light-harvesting chlorophyll a/b pigment–protein complexes. Light-induced reversible structural changes associated with energy dissipation. Biochemistry 35:8981–8985

    Article  PubMed  CAS  Google Scholar 

  • Bloemendal M, van Grondelle R (1993) Linear-dichroism spectroscopy for the study of structural-properties of proteins. Mol Biol Rep 18:49–69

    Article  PubMed  CAS  Google Scholar 

  • Breton J, Vermeglio A (1982) Orientation of photosynthetic pigments in vivo. In: Govindjee R (ed) Photosynthesis. 1: energy conversion by plants and bacteria. Academic Press, New York, pp 153–194

    Google Scholar 

  • Büchel C, Garab G (1997) Organization of the pigment molecules in the chlorophyll a/c light-harvesting complex of Pleurochloris meiringensis (xanthophyceae). Characterization with circular dichroism and absorbance spectroscopy. J Photochem Photobiol B 37:118–124

    Article  Google Scholar 

  • Clayton RK (1980) Photosynthesis: physical mechanism and chemical patterns. Cambridge University Press, Cambridge

    Google Scholar 

  • Cogdell RJ, Scheer H (1985) Circular dichroism of light-harvesting complexes from purple photosynthetic bacteria. Photochem Photobiol 42:669–678

    Article  CAS  Google Scholar 

  • Croce R, Morosinotto T, Ihalainen JA, Chojnicka A, Breton J, Dekker JP, van Grondelle R, Bassi R (2004) Origin of the 701-nm fluorescence emission of the Lhca2 subunit of higher plant photosystem I. J Biol Chem 279:48543–48549

    Article  PubMed  CAS  Google Scholar 

  • Davidsson A, Nordén B, Seth S (1980) Measurement of oriented circular dichroism. Chem Phys Lett 70:313–316

    Article  CAS  Google Scholar 

  • Disch RL, Sverdlik DI (1969) Apparent circular dichroism of oriented systems. Anal Chem 41:82–86

    Article  CAS  Google Scholar 

  • Frank HA, Violette CA, Taremi SS, Budil DE (1989) Linear dichroism of single crystals of the reaction center from Rhodobacter sphaeroides wild type strain 2.4.1. Photosynth Res 21:107–116

    CAS  Google Scholar 

  • Garab G (1996) Linear and circular dichroism. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis. Kluwer, Dordrecht, pp 11–40

    Google Scholar 

  • Garab G, van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101:135–146

    Article  PubMed  CAS  Google Scholar 

  • Garab G, Faludi-Daniel A, Sutherland JC, Hind G (1988a) Macroorganization of chlorophyll a/b light-harvesting complex in thylakoids and aggregates: information from circular differential scattering. Biochemistry 27:2425–2430

    Article  CAS  Google Scholar 

  • Garab G, Leegood RC, Walker DA, Sutherland JC, Hind G (1988b) Reversible changes in macroorganization of the light-harvesting chlorophyll a/b pigment protein complex detected by circular-dichroism. Biochemistry 27:2430–2434

    Article  CAS  Google Scholar 

  • Garab G, Wells S, Finzi L, Bustamante C (1988c) Helically organized macroaggregates of pigment protein complexes in chloroplasts—evidence from circular intensity differential scattering. Biochemistry 27:5839–5843

    Article  PubMed  CAS  Google Scholar 

  • Garab G, Kieleczawa J, Sutherland JC, Bustamante C, Hind G (1991) Organization of pigment-protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll b-less mutant of barley as revealed by circular dichroism. Photochem Photobiol 54:273–281

    Article  CAS  Google Scholar 

  • Garab G, Galajda P, Pomozi I, Finzi L, Praznovszky T, Ormos P, van Amerongen H (2005) Alignment of biological microparticles by a polarized laser beam. Eur Biophys J Biophys Lett 34:335–343

    Article  Google Scholar 

  • Georgakopoulou S, van der Zwan G, Bassi R, van Grondelle R, van Amerongen H, Croce R (2007) Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Biochemistry 46:4745–4754

    Article  PubMed  CAS  Google Scholar 

  • Goss R, Wilhelm C, Garab G (2000) Organization of the pigment molecules in the chlorophyll a/b/c containing alga Mantoniella squamata (Prasinophyceae) studied by means of absorption, circular and linear dichroism spectroscopy. Biochim Biophys Acta 1457:190–199

    Article  PubMed  CAS  Google Scholar 

  • Hobe S, Prytulla S, Kühlbrandt W, Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. Embo J 13:3423–3429

    PubMed  CAS  Google Scholar 

  • Hofrichter J, Eaton WA (1976) Linear dichroism of biological chromophores. Ann Rev Biophys Bioeng 5:511–560

    Article  CAS  Google Scholar 

  • Istokovics A, Simidjiev I, Lajko F, Garab G (1997) Characterization of the light induced reversible changes in the chiral macroorganization of the chromophores in chloroplast thylakoid membranes. Temperature dependence and effect of inhibitors. Photosynth Res 54:45–53

    Article  CAS  Google Scholar 

  • Johansson LBA, Lindblom G (1980) Orientation and mobility of molecules in membranes studied by polarized light spectroscopy. Quart Rev Biophys 13:63–118

    Article  CAS  Google Scholar 

  • Keller D, Bustamante C (1986) Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism. J Chem Phys 84:2972–2980

    Article  CAS  Google Scholar 

  • Kovacs L, Damkjaer J, Kereïche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–3120

    Article  PubMed  CAS  Google Scholar 

  • Kuball HG (2002) CD and ACD spectroscopy on anisotropic samples: Chirality of oriented molecules and anisotropic phases—a critical analysis. Enantiomer 7:197–205

    Article  PubMed  CAS  Google Scholar 

  • Kuball HG, Höfer T (2000a) Chirality and circular dichroism of oriented molecules and anisotropic phases. Chirality 12:278–286

    Article  PubMed  CAS  Google Scholar 

  • Kuball HG, Höfer T (2000b) Circular dichroism of oriented molecules. In: Berova N, Nakanishi K, Woody RW (eds) Circular dichroism: principles and applications. Wiley-VCH, New York, pp 133–157

  • Kuball HG, Sieber G, Neubrech S, Schultheis B, Schonhofer A (1993) Circular-dichroism of oriented molecules—magnetic dipole and electric quadrupole contribution to the ACD of chirally substituted diaminoanthraquinones. Chem Phys 169:335–350

    Article  CAS  Google Scholar 

  • Kuball HG, Dorr E, Höfer T, Turk O (2005) Exciton chirality method. Oriented molecules—anisotropic phases. Monatshefte fur Chemie 136:289–324

    Article  CAS  Google Scholar 

  • Kühlbrandt W, Thaler T, Wehrli E (1983) The structure of membrane crystals of the light-harvesting chlorophyll a/b protein complex. J Cell Biol 96:1414–1424

    Article  PubMed  Google Scholar 

  • Lambrev P, Várkonyi Z, Krumova S, Kovács L, Miloslavina Y, Holzwarth AR, Garab G (2007) Importance of trimer–trimer interactions for the native state of the plant light-harvesting complex II. Biochim Biophys Acta 1767:847–853

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428:287–292

    Article  PubMed  CAS  Google Scholar 

  • Morosinotto T, Breton J, Bassi R, Croce R (2003) The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J Biol Chem 278:49223–49229

    Article  PubMed  CAS  Google Scholar 

  • Morosinotto T, Segalla A, Giacometti GM, Bassi R (2010) Purification of structurally intact grana from plants thylakoids membranes. J Bioenerg Biomembr 42:37–45

    Article  PubMed  CAS  Google Scholar 

  • Moya I, Silvestri M, Vallon O, Cinque G, Bassi R (2001) Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Biochem 40:12552–12561

    Article  CAS  Google Scholar 

  • Norden B, Kubista M, Kurucsev T (1992) Linear dichroism spectroscopy of nucleic-acids. Quart Rev Biophys 25:51–170

    Article  CAS  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2005) Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 angstrom crystal structure. J Phys Chem B 109:10493–10504

    Article  PubMed  CAS  Google Scholar 

  • Pearlstein RM (1991) Theoretical interpretation of antenna spectra. In: Scheer H (ed) Chlorophylls. CRC Press, New York, pp 1047–1078

    Google Scholar 

  • Schellman J, Jensen HP (1987) Optical spectroscopy of oriented molecules. Chem Rev 87:1359–1399

    Article  CAS  Google Scholar 

  • Simidjiev I, Barzda V, Mustárdy L, Garab G (1997) Isolation of lamellar aggregates of the light-harvesting chlorophyll a/b protein complex of photosystem II with long-range chiral order and structural flexibility. Anal Biochem 250:169–175

    Article  PubMed  CAS  Google Scholar 

  • Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution. EMBO J 24:919–928

    Article  PubMed  CAS  Google Scholar 

  • Steinbach G, Besson F, Pomozi I, Garab G (2005) Differential polarization laser scanning microscopy: biological applications. Proc SPIE 5969:59692C

    Article  Google Scholar 

  • Sutherland JC (1978) The magnetic optical activity of porphyrins. The porphyrins. Academic Press, New York, pp 225–248

    Google Scholar 

  • Sutherland JC, Holmquist B (1980) Magnetic circular dichroism of biological molecules. Ann Rev Biophys Bioeng 9:293–326

    Article  CAS  Google Scholar 

  • Swenberg CE, Geacintov NE (1976) Selective light scattering from oriented photosynthetic membranes. In: Birks JB (ed) Excited states in biology. Wiley, London, pp 288–300

    Google Scholar 

  • Szabó M, Lepetit B, Goss R, Wihelm C, Mustárdy L, Garab G (2008) Structurally flexible macro-organization of the pigment-protein complexes of the diatom Phaeodactylum tricornutum. Photosynth Res 95:237–245

    Article  PubMed  Google Scholar 

  • Tinoco I, Mickols W, Maestre MF, Bustamante C (1987) Absorption, scattering, and imaging of biomolecular structures with polarized-light. Annu Rev Biophys Biophys Chem 16:319–349

    Article  PubMed  CAS  Google Scholar 

  • Tunis-Schneider MJ, Maestre MF (1970) Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films—a preliminary study. J Mol Biol 52:521–541

    Article  PubMed  CAS  Google Scholar 

  • van Amerongen H, Struve WS (1995) Polarized optical spectroscopy of chromoproteins. In: Sauer K (ed) Methods in enzymology vol. 246 biochemical spectroscopy. Academic Press, San Diego, pp 259–283

    Google Scholar 

  • van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic excitons. World Scientific, Singapore

    Book  Google Scholar 

  • Völker S, Ono T, Inoue Y, Renger G (1985) Effect of trypsin on PS-II particles—correlation between Hill-activity, Mn-abundance and peptide pattern. Biochim Biophys Acta 806:25–34

    Article  Google Scholar 

  • Yang C, Boggasch S, Haase W, Paulsen H (2006) Thermal stability of trimeric light-harvesting chlorophyll a/b complex (LHCIIb) in liposomes of thylakoid lipids. Biochim Biophys Acta 1757:1642–1648

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Lambrev P, Chen Z, Jávorfi T, Kiss AZ, Paulsen H, Garab G (2008) The negatively charged amino acids in the lumenal loop influence the pigment binding and conformation of the major light-harvesting chlorophyll a/b complex of photosystem II. Biochim Biophys Acta 1777:1463–1470

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the EC Marie Curie Training Network (ITN) “HARVEST” (No. 238017) and the Hungarian Scientific Research Fund, OTKA/NKTH CNK 80345 to G.G. and GOP-1.1.2-07/1-2008-0007 to P.L. The authors thank Hans-Georg Kuball for his helpful advice, László Kovács for the preparation of BBY and LHCII, Beth Lin for the STEM sample preparation and Martha Simon for the STEM operation. US-NIH and US-DOE provided financial support to the STEM Facility. GH received support from US-DOE, Office of Basic Energy Sciences, Division of Energy Biosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Győző Garab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miloslavina, Y., Lambrev, P.H., Jávorfi, T. et al. Anisotropic circular dichroism signatures of oriented thylakoid membranes and lamellar aggregates of LHCII. Photosynth Res 111, 29–39 (2012). https://doi.org/10.1007/s11120-011-9664-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9664-y

Keywords

Navigation