Skip to main content

Advertisement

Log in

Inorganic carbon acquisition in algal communities: are the laboratory data relevant to the natural ecosystems?

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Most of the experimental work on the effects of ocean acidification on the photosynthesis of algae has been performed in the laboratory using monospecific cultures. It is frequently assumed that the information obtained from these cultures can be used to predict the acclimation response in the natural environment. CO2 concentration is known to regulate the expression and functioning of the CCMs in the natural communities; however, ambient CO2 can become quite variable in the marine ecosystems even in the short- to mid-term. We propose that the degree of saturation of the photosynthesis for a given algal community should be defined in relation to the particular characteristics of its habitat, and not only in relation to its taxonomic composition. The convenience of high CO2 experiments to infer the degree of photosynthesis saturation by CO2 in the natural algal communities under the present ocean conditions, as well as its trend in a coming future is discussed taking into account other factors such as the availability of light and nutrients, and seasonality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andría JR, Vergara JJ, Perez-Llorens JL (1999) Biochemical responses and photosynthesis performance of Gracilaria sp. (Rhodophyta) from Cadiz, Spain, cultured under different inorganic carbon and nitrogen. Eur J Phycol 34:497–504

    Article  Google Scholar 

  • Axelsson L, Uusitalo J (1988) Carbon acquisition strategies for marine macroalgae. I. Utilization of proton exchanges visualized during photosynthesis in a closed system. Mar Biol 97:295–300

    Article  CAS  Google Scholar 

  • Axelsson L, Uusitalo J, Ryberg H (1991) Mechanisms for concentrating and storage of inorganic carbon in marine macroalgae. In: García-Reina G, Pédersen M (eds) Seaweed cellular biotechnology. Universidad de las Palmas de Gran Canaria, Las Palmas, Spain, pp 185–198

    Google Scholar 

  • Axelsson L, Ryberg H, Beer S (1995) Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant Cell Environ 18:439–445

    Article  CAS  Google Scholar 

  • Axelsson L, Mercado JM, Figueroa FL (2000) Utilization of bicarbonate at high pH by the brown macroalga Laminaria saccharina. Eur J Phycol 35:53–59

    Google Scholar 

  • Badger MR, Andrews (1982) Photosynthesis and inorganic carbon usage by the marine cyanobacterium Synechococcus sp. Plant Physiol 70:517–523

    Article  PubMed  CAS  Google Scholar 

  • Bates NR (2001) Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical. Deep-Sea Res Part II 48:1507–1528

    Article  CAS  Google Scholar 

  • Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40

    Article  Google Scholar 

  • Beardall J, Stojkovic S, Lansen S (2009) Living in a high CO2 world: impacts of global climate changes on marine phytoplankton. Plant Ecol Divers 2:191–205

    Article  Google Scholar 

  • Beer S, Israel A (1986) Photosynthesis of Ulva sp. III. O2 effects, carboxylase activities, and the CO2 incorporation pattern. Plant Physiol 81:937–938

    Article  PubMed  CAS  Google Scholar 

  • Beer S, Koch E (1996) Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar Ecol Prog Ser 41:199–204

    Article  Google Scholar 

  • Benschop JJ, Badger MR, Price GD (2003) Characterisation of CO2 and bicarbonate uptake in the cyanobaterium Synechocystis sp. PC6803. Photos Res 77:117–126

    Article  CAS  Google Scholar 

  • Björk M, Haglund K, Ramazanov Z, García-Reina G, Pedersen M (1992) Inorganic-carbon assimilation in the green seaweed Ulva rigida C. Ag. (Chlorophyta). Planta 187:15–46

    Google Scholar 

  • Björk M, Axelsson L, Beer S (2004) Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedisch Atlantic coast? Mar Ecol Prog Ser 284:109–116

    Article  Google Scholar 

  • Borges AV, Frankignoulle M (1999) Daily and seasonal variations of the partial pressure of CO2 in surface seawater along the Belgian and southern Dutch coastal areas. J Mar Syst 19:251–266

    Google Scholar 

  • Borges AV, Schiettecatte L-S, Abril G, Delille B, Gazeau F (2006) Carbon dioxide in European coastal waters. Estur Coast Shelf Sci 70:375–387

    Article  CAS  Google Scholar 

  • Boyd PW, Strzepek R, Fu F, Hutchins DA (2010) Enviromental control of open-ocean phytoplankton groups: now and in the future. Limnol Oceanogr 55:1353–1376

    Article  CAS  Google Scholar 

  • Brussaard CPD, Gast GJ, van Duyl FC, Riegman (1996) Impact of phytoplankton bloom magnitude on a pelagic microbial food web. Mar Ecol Prog Ser 144:211–221

    Article  Google Scholar 

  • Burkhardt S, Zondervan I, Riebesell U (1999) Effect of CO2 concentration on C:N:P ratio in marine phytoplankton: a species comparison. Limnol Oceanogr 44:683–690

    Article  CAS  Google Scholar 

  • Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46:1378–1391

    Article  CAS  Google Scholar 

  • Cai WJ, Dai M (2004) Comment on “enhanced open ocean storage of CO2 from shelf sea pumping”. Science 306:1477. doi:10.1126/science.1102132

    Article  PubMed  CAS  Google Scholar 

  • Cassar N, Laws EA, Bidigare RR (2004) Bicarbonate uptake by Southern Ocean phytoplankton. Global Biogeochem 18. doi:10.1029/2003GB002116

  • Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ 18:919–924

    Article  CAS  Google Scholar 

  • Colman B, Huertas IE, Bhatti S, Dason J (2002) The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct Plant Biol 29:261–270

    Article  CAS  Google Scholar 

  • Dason JS, Huertas IE, Colman B (2004) Sources of inorganic carbon for photosynthesis in two marine dinoflagellates. J Phycol 40:285–292

    Article  CAS  Google Scholar 

  • Delille B, Borges AV, Delille D (2009) Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the sub-Antarctic coastal area. Estur Coast Shelf Sci 81:114–122

    Article  Google Scholar 

  • Engel A, Schulz K, Riebesell U, Bellerby RGJ, Delille B, Schartau M (2007) Effects of CO2 on particle size distribution and phytoplankton abudance during a mesocosm bloom experiment (PeECE II). Biog Discuss 4:4101–4133

    Article  Google Scholar 

  • Estrada M, Blasco D (1985) Phytoplankton assemblages in coastal upwelling areas. In: Bas C, Margalef R, Rubíes P (eds) International Symposium on the most important Upwelli Areas off Western Africa (Cape Blanco and Benguela), vol 1. Instituto de Investigaciones, Pesqueras, Barcelona, pp 379–402

  • Falkowski PG (1997) The paradox of carbon dioxide efflux. Current Biol 7:R637–R639

    Article  CAS  Google Scholar 

  • Feely RA, Wannikhorf R, McGills W, Carr ME, Cosca CE (2004) Effects of wind speed and gas exchange parameterizations on the air-sea CO2 fluxes in the equatorial Pacific Ocean. J Geophys Res 109:C08S03

    Article  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski PG (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  PubMed  CAS  Google Scholar 

  • Fu F-X, Warner ME, Zhang YH, Feng YY, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J Phycol 43:485–496

    Article  Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishiharata T, Akano T, Kiyohara M (1993a) Calcification in the articulated coralline alga Corallina pilufera, with special reference to the effect of elevated CO2 concentration. Mar Biol 117:129–132

    Article  CAS  Google Scholar 

  • Gao K, Aruga Y, Asada K, Kiyohara M (1993b) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol 5:563–571

    Article  CAS  Google Scholar 

  • Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Ann Rev Ecol Syst 29:405–433

    Article  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Ann Rev Biol 56:99–131

    Article  CAS  Google Scholar 

  • Goldman JC (1999) Inorganic carbon availability and the growth of large marine diatoms. Mar Ecol Prog Ser 180:81–91

    Article  CAS  Google Scholar 

  • Gordillo FJL, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    Article  PubMed  CAS  Google Scholar 

  • Gordillo FJL, Jiménez C, Figueroa FL, Niell FX (2003a) Influence of elevated CO2 and nitrogen supply on the carbon assimilation performance and cell composition of the unicellular alga Dunaliella viridis. Physiol Plant 119:513–518

    Article  CAS  Google Scholar 

  • Gordillo FJL, Figueroa FL, Niell FX (2003b) Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218:315–322

    Article  PubMed  CAS  Google Scholar 

  • Grossart HP, Allgaier M, Passow U, Riebesell U (2006) Testing the effect of CO2 concentration on dynamics of marine heterotrophic bacterioplankton. Limnol Oceanogr 51:1–11

    Article  CAS  Google Scholar 

  • Haglund K, Björk M, Ramazanov Z, García-Reina G, Pedersen M (1992) Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187:275–281

    Article  CAS  Google Scholar 

  • Hansen PJ (2002) Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat Microb Ecol 28:279–288

    Article  Google Scholar 

  • Harada H, Nakatsuma D, Ishida M, Matsuda Y (2005) Regulation of the expression of intracellular beta-carbonic anhydrase in response to CO2 and light in the marine diatom Phaedodactylum tricornutum. Plant Physiol 139:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Hellblom F, Beer S, Björk M, Axelsson L (2001) A buffer sensitive inorganic carbon utilisation system in Zostera marina. Aquat Bot 69:55–62

    Article  CAS  Google Scholar 

  • Hinga KR (1992) Co-occurrence of dinoflagellate blooms and high pH in marine enclosures. Mar Ecol Prog Ser 86:181–187

    Article  Google Scholar 

  • Hinga KR (2002) Effects of pH on coastal marine phytoplankton. Mar Ecol Prog Ser 238:281–300

    Article  Google Scholar 

  • Hobson LA, Hanson CE, Holeton C (2001) An ecological basisfor extracellular carbonic anhydrase in marine unicellular algae. J Phycol 37:717–723

    Article  CAS  Google Scholar 

  • Huertas IE, Navarro G, Rodríguez-Gálvez S, Lubián LM (2006) Temporal patterns of carbon dioxide in relation to hydrological conditions and primary production in the northeastern shelf of the Gulf of Cadiz (SW Spain). Deep-Sea Res Part II 53:1344–1362

    Article  Google Scholar 

  • Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009) Testing the effects of ocean acidification on algal metabolism: considerations for experimental design. J Phycol 45:1236–1251

    Article  CAS  Google Scholar 

  • Hutchins DA, Fu FX, Zhang Y, Warner ME, Feng Y, Portune K, Bernhardt PW, Mulholland MR (2007) CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr 52:1293–1304

    Article  CAS  Google Scholar 

  • Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassow P et al (2008) Phytoplankton calcification in a high CO2 world. Science 320:336–339

    Article  PubMed  CAS  Google Scholar 

  • Iglesias-Rodríguez MD, Brown CW, Doney SC, Kleypas J, Kolber D, Kolber Z, Hayer PK, Falkowski PG (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Glob Biogeochem Cycles 16. doi: 10.1029/2001GB001454

  • Israel A, González EL (1996) Photosynthesis and inorganic carbon utilization in Pleurochrysis sp. (Haptophyta), a coccolithophorid alga. Mar Ecol Prog Ser 137:243–250

    Article  CAS  Google Scholar 

  • Israel A, Hophy M (2002) Growth, photosynthetic properties and amounts of marine macroalgae grown under current and elevated seaweater CO2 concentrations. Global Change Biol 8:831–840

    Article  Google Scholar 

  • Kai M, Hara T, Aoyama H, Kuroda N (1999) A massive coccolithophorid bloom observed in Mikawa Bay. J Geophys Soc China 55:395–406

    Google Scholar 

  • Kigoshi K, Hashitani T (1963) The shelf-diffusion coefficients of carbon dioxide, hydrogen carbonate and carbonate ions in aqueous solution. Bull Chem Soc Japan 36:1372

    Article  Google Scholar 

  • Kranz SA, Sultemeyer D, Richter K-U, Rost B (2009) Carbon acquisition by Trichodesmium: the effect of pCO2 and diurnal changes. Limnol Oceanogr 54:548–559

    Article  CAS  Google Scholar 

  • Kübler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO2 and O2 on the seweed Lomentaria artuculata. Plant Cell Environ 22:1303–1310

    Article  Google Scholar 

  • Künh SF, Raven JA (2008) Photosynthetic oscillation in individual cells of the marine diatom Coscinodiscus wailesii (Bacillariophycease) revealed by microsensor measurements. Photos Res 95:37–44

    Google Scholar 

  • Larsson C, Axelsson L, Ryberg H, Beer S (1997) Photosynthetic carbon utilization by Enteromorpha intestinalis (Chloroplyta) from a Swedish rockpool. Eur J Phycol 32:49–54

    Article  Google Scholar 

  • Lucas WJ, Keifer DW, Sanders D (1983) Bicarbonate transport in Chara coralline: evidence for contransport HCO3 with H+. J Membr Biol 73:263–264

    Article  CAS  Google Scholar 

  • Maberly SC (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J Phycol 26:439–449

    Article  CAS  Google Scholar 

  • Maberly SC, Raven JA, Johnston AM (1992) Discrimination between 12C and 13C by marine plants. Oecologia 91:481–492

    Article  Google Scholar 

  • Macedo MF, Duarte P, Mendes P, Ferreira JG (2001) Annual variation of environmental variables, phytoplankton species composition and photosynthetic parameters in a coastal lagoon. J Plankton Res 23:719–732

    Article  CAS  Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival in instable enviroments. Oceanol Acta 1:493–509

    Google Scholar 

  • Martin CL, Tortell PD (2006) Bicarbonate transport and extracellular carbonic anhydrase activity in Bering Sea phytoplankton assemblages: results from isotope disequilibrium experiments. Limnol Oceanogr 51:2111–2121

    Article  CAS  Google Scholar 

  • Matsuda Y, Hara T, Colman B (2001) Regulation of the induction of bicarbonate uptake by disolved CO2 in the marine diatom Phaedodactilum tricornutum. Plant Cell Environ 24:611–620

    Article  CAS  Google Scholar 

  • McGinn PJ, Morel FMM (2008) Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C-4 pathway of marine diatoms. Plant Physiol 146:300–309

    Article  PubMed  CAS  Google Scholar 

  • Mercado JM, Niell FX (2000) Carbon dioxide uptake by Bostrychia scorpioides (Rhodophyceae) under emersed conditions. Eur J Phycol 35:45–51

    Article  Google Scholar 

  • Mercado JM, Niell FX, Figueroa FL (1997) Regulation of the mechanisms for HCO3 use by the inorganic carbon level in Porphyra leucosticta Thur. in Le joli (Rhodophyta). Planta 201:319–325

    Article  PubMed  CAS  Google Scholar 

  • Mercado JM, Gordillo FJL, Figueroa FL, Niell FX (1998a) External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. J Exp Mar Biol Ecol 221:209–220

    Article  CAS  Google Scholar 

  • Mercado JM, Carmona R, Niell FX (1998b) Bryozoans increase available CO2 for photosynthesis in Gelidium sesquipedale (Rhodophyceae). J Phycol 34:925–927

    Article  Google Scholar 

  • Mercado JM, Niell FX, Gil-Rodríguez MC (2001) Photosynthesis might be limited by light, not inorganbic carbón availability, in three intertidal Gelidiales species. New Phytol 149:431–439

    Article  CAS  Google Scholar 

  • Mercado JM, Ramírez T, Cortes D, Liger E (2009a) Effect of carbonic anhydrase inhibitors on the inorganic carbon uptake by phytoplankton natural assemblages. J Phycol 45:8–15

    Article  CAS  Google Scholar 

  • Mercado JM, de los Santos C, Perez-Llorens JL, Vergara JJ (2009b) Carbon isotopic fractionation in macroalgae from Cádiz Bay (Southern Spain): comparisons with other biogeographic regions. Est Coast Shelf Sci 85:449–458

    Article  CAS  Google Scholar 

  • Middelboe AL, Hansen PJ (2007) High pH in shallow-water macroalgal habitats. Mar Ecol Prog Ser 338:107–117

    Article  CAS  Google Scholar 

  • Mitchell C, Beardall J (1996) Inorganic carbon uptake by an Antartic sea-ice diatom, Nitzschia frigida. Polar Biol 16:95–99

    Article  Google Scholar 

  • Morel FM, Cox EH, Kraepiel AML, Lane TW, Milligan AJ, Schaperdoth I, Reinfelder JR, Tortell PD (2002) Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii. Funct Plant Biol 29:301–308

    Article  CAS  Google Scholar 

  • Nimer NA, Brwnlee C, Merrett MJ (1994) Carbon dioxide availability, intracellular pH and growth rate of the coccolithophore Emiliania huxleyi. Mar Ecol Prog Ser 109:257–262

    Article  Google Scholar 

  • Nimer NA, Iglesias-Rodríguez MD, Merrett MJ (1997) Bicarbonate utilization by marine phytoplankton species. J Phycol 33:625–631

    Article  CAS  Google Scholar 

  • Nimer NA, Warren M, Merrett MJ (1998) The regulation of photosynthetic rate and activation of extracellular carbonic anhydrase under CO2-limiting conditions in the marine diatom Skeletonema costatum. Plant Cell Environ 21:805–812

    Article  CAS  Google Scholar 

  • Nimer N, Brownlee C, Merrett M (1999) Extracellular carboni anhydrase facilities carbon diaxide availability for photosynthesis in the marine dinoflagellate Prorocentrum micans. Plant Physiol 120:105–111

    Article  PubMed  CAS  Google Scholar 

  • Paulino I, Egge JK, Larsen A (2008) Effects of increased atmospheric CO2 on small and intermediatesized osmotrophs during a nutrient induced phytoplankton bloom. Biogeosciences 5:739–748

    Article  CAS  Google Scholar 

  • Perez-Llorens JL, Brun FG, Andrıia J, Vergara JJ (2004) Seasonal and tidal variability of environmental carbon related physico-chemical variables and inorganic C acquisition in Gracilariopsis longissima and Enteromorpha intestinalis from Los Toruños salt marsh (Cadiz Bay, Spain). J Exp Mar Biol Ecol 304:183–201

    Article  CAS  Google Scholar 

  • Price GD, Maeda S-I, Omata T, Badger MR (2002) Modes of inorganic carbon uptake in the cyanobacterium Synechococcus sp. PCC7942. Funct Plant Biol 29:131–149

    Article  CAS  Google Scholar 

  • Ratti S, Giordano M, Mose D (2007) CO2-concentrating mechanisms of the potentially toxic dinoflagellate Protoceratium reticulatum (Dinophycease, Gonyaulacales). J Phycol 43:693–701

    Article  CAS  Google Scholar 

  • Raven JA (1997) Inorganic carbon acquisition by marine autotrophs. Adv Bot Res 27:85–205

    Article  CAS  Google Scholar 

  • Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photos Res. doi:10.1007/s11120-010-9563-7

  • Raven JA, Farquhar GD (1990) The influence of N-metabolism and organic acid synthesis on the natural abundance of isotopes of carbon in plants. New Phytol 116:505–529

    Article  CAS  Google Scholar 

  • Raven JA, Johnston AM, Kubler JE, Korb R, Mcinroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Clayton MN, Vanderklift M, Fredriksen S, Dunton KH (2002a) Seaweeds in cold seas: evolution and carbon acquisition. Ann Bot 90:525–536

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Johnston AM, Kubler JE, Korb R, Mcinroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift M, Fredriksen S, Dunton KH (2002b) Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct Plant Biol 29:355–378

    Article  CAS  Google Scholar 

  • Raven JA, Ball L, Beardall J, Giordano M, Maberly SC (2005) Algae lacking CCMs. Can J Bot 83:879–890

    Article  CAS  Google Scholar 

  • Raven JA, Cockell CS, DeLaRocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc B 363:2641–2650

    Article  CAS  Google Scholar 

  • Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu Rev Mar Sci 3:291–315

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  PubMed  CAS  Google Scholar 

  • Riebesell U, Shulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhofer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zollner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450. doi:10.1038/nature0626710.1038

  • Rochelle-Newall E, Delille B, Frankignoulle M, Gattuso JP, Jacquet S, Riebesell U, Terbruggen A, Zondervan I (2004) Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels. Mar Ecol Prog Ser 272:25–31

    Article  Google Scholar 

  • Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48:55–67

    Google Scholar 

  • Rost B, Richter K-U, Riebesell U, Hansen PJ (2006) Inorganic carbon acquisition in red tide dinoflagellates. Plant Cell Environ 29:810–822

    Article  PubMed  CAS  Google Scholar 

  • Rotatore C, Colman B, Kuzma M (1995) The active uptake of carbon dioxide by the marine diatoms Phaedodactylum tricornutum and Cyclotella sp. Plant Cell Environ 18:913–918

    Article  CAS  Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine Picocyanobacteria. Microl Mol Bio Rev 73:249–299

    Article  CAS  Google Scholar 

  • Shibata M, Ohkawa H, Katoh H, Shimoyama M, Ogawa T (2002) Two CO2 systems in cyanobacteria: four systems for inorganic carbon acquisition in Synechocystis sp. Strain PCC6803. Funct Plant Biol 29:919–923

    Article  Google Scholar 

  • Soderberg LM, Hansen PJ (2007) Growth limitation due to high pH and low inorganic carbon concentrations in temperate species of the dinoflagellate genus Ceratium. Mar Ecol Prog Ser 351:103–112

    Article  Google Scholar 

  • Spilling K (2007) Dense sub-ice bloom of dinoflagellates in the Baltic Sea, potentially limited by high pH. J Plankton Res 29:895–901

    Article  CAS  Google Scholar 

  • Surif MB, Raven JA (1989) Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78:97–105

    Article  Google Scholar 

  • Surif MB, Raven JA (1990) Photosynthetic gas exchange under emerged conditions in eulittoral and normally submersed members of the Fucales and Laminariales: interpretation in relation to C isotope ratio and N and water use efficiency. Oecologia 82:68–80

    Article  Google Scholar 

  • Tortell PD, Long MC (2010) Spatial and temporal variability of biogenic gases during the Southern Ocean spring bloom. Geophys Res Lett 7:3215–3237

    Google Scholar 

  • Tortell PD, Morel FMM (2002) Sources of inorganic carbon for phytoplankton in the eastern Subtropical and Equatorial Pacific Ocean. Limnol Oceanogr 47:1012–1022

    Article  Google Scholar 

  • Tortell PD, Rau GH, Morel FMM (2000) Inorganic carbon acquistion in coastal Pacific phytoplankton communities. Limnol Oceanogr 45:1485–1500

    Article  CAS  Google Scholar 

  • Tortell PD, Martin CL, Corkum ME (2006) Sources of inorganic carbon uptake and intracellular assimilation by Subartic Pacific phytoplankton assemblages. Limnol Oceanogr 51:2102–2110

    Article  CAS  Google Scholar 

  • Tortell PD, Payne C, Gueguen C, Strzepek RF, Boyd PW, Rost B (2008a) Inorganic carbon uptake by Southern Ocean phytoplankton. Limnol Oceanogr 53:1266–1278

    Article  CAS  Google Scholar 

  • Tortell PD, Payne CD, Li YY, Trimborn S, Rost B et al (2008b) CO2 sensitivity of Southern Ocean phytoplankton. Geophys Res Lett 35:L04605

    Article  CAS  Google Scholar 

  • Trimborn S, Wolf-Gladrow D, Richter K-U, Rost B (2009) The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms. J Exp Mar Biol Ecol 376:26–36

    Article  CAS  Google Scholar 

  • Uku J, Beer S, Bjork M (2005) Buffer sensitivity of photosynthetic carbon utilisation in eight tropical seagrasses. Mar Biol 147:1085–1090

    Article  Google Scholar 

  • Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. PNAS 105:18848–18853

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Zou D, Gao KS (2010) Effects of elevated CO2 and phosphorous supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracialria lemaneiformis (Rhodophyta). Bot Mar 53:123–129

    Article  CAS  Google Scholar 

  • Yallop ML (2001) Distribution patterns and biomass estimates of diatoms and autotrophic dinoflagelattes in the NE Atlantic during June and July 1996. Deep-sea Res Part II 48:825–844

    Article  Google Scholar 

  • Yates KK, Dufore C, Smiley N, Jackson C, Halley RB (2007) Diurnal variation of oxygen and carbonate system in Tampa Bay and Florida Bay. Mar Chem 104:110–124

    Article  CAS  Google Scholar 

  • Yu J, Tang J, Zhang P, Dong S (2006) Effects of elevated CO2 on sensitivity of six species of algae and interspecific competition of three species of algae. J Exp Sci 18:353–358

    CAS  Google Scholar 

  • Zou DH, Gao KS (2002) Photosynthetic utilization in Porphyra haitanensis (Bangiales, Rhodophyta). Chin Sci Bull 47:1629–1633

    CAS  Google Scholar 

  • Zou D, Gao KS (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48:510–517

    Article  CAS  Google Scholar 

  • Zou D, Gao KS (2010) Effects of elevated CO2 and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis (Rhodophyta). Bot Mar 53:123–129

    Google Scholar 

  • Zou D, Gao K, Xia J (2003) Photosynthetic utilization of inorganic carbon in the economic brown alga, Hizikia fusiforme (Sargassaceae) from the South China Sea. J Phycol 39:1095–1100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by the projects NITROALBORAN (CTM2006-00426), ARCO2 (CGL2007-64149/ANT) and TROFOALBORAN (CTM2009-07776/MAR) of the Spanish National Programme in Marine Science and Technology from the Ministerio Español de Innovacion y Ciencia (co-funded by EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús M. Mercado.

Additional information

Guest Editor: John Raven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercado, J.M., Gordillo, F.J.L. Inorganic carbon acquisition in algal communities: are the laboratory data relevant to the natural ecosystems?. Photosynth Res 109, 257–267 (2011). https://doi.org/10.1007/s11120-011-9646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9646-0

Keywords

Navigation