Skip to main content
Log in

An overview on chlorophylls and quinones in the photosystem I-type reaction centers

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Minor but key chlorophylls (Chls) and quinones in photosystem (PS) I-type reaction centers (RCs) are overviewed in regard to their molecular structures. In the PS I-type RCs, the prime-type chlorophylls, namely, bacteriochlorophyll (BChl) a′ in green sulfur bacteria, BChl g′ in heliobacteria, Chl a′ in Chl a-type PS I, and Chl d′ in Chl d-type PS I, function as the special pairs, either as homodimers, (BChl a′)2 and (BChl g′)2 in anoxygenic organisms, or heterodimers, Chl a/a′ and Chl d/d′ in oxygenic photosynthesis. Conversions of BChl g to Chl a and Chl a to Chl d take place spontaneously under mild condition in vitro. The primary electron acceptors, A 0, are Chl a-derivatives even in anoxygenic PS I-type RCs. The secondary electron acceptors are naphthoquinones, whereas the side chains may have been modified after the birth of cyanobacteria, leading to succession from menaquinone to phylloquinone in oxygenic PS I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

BPhe:

Bacteriopheophytin

Chl:

Chlorophyll

HPLC:

High performance liquid chromatography

MQ:

Menaquinone

P700:

The primary electron donor of photosystem I

P740:

The primary electron donor of PS I in A. marina

P798:

The primary electron donor of heliobacteria

P840:

The primary electron donor of green sulfur bacteria

P870:

The primary electron donor of purple bacteria

P960:

The primary electron donor of bacteriochlorophyll b containing purple bacteria

Phe:

Pheophytin

PhQ:

Phylloquinone

PS:

Photosystem

RC:

Reaction center

References

  • Akiyama M, Miyashita H, Watanabe T, Kise H, Miyachi S, Kobayashi M (2001) Detection of chlorophyll d′ and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. Anal Sci 17:205–208

    Article  CAS  PubMed  Google Scholar 

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Mimuro M, Miyachi S, Kobayashi M (2002) Quest for minor but key chlorophyll molecules in photosynthetic reaction centers—unusual pigment composition in the reaction centers of a chlorophyll d-dominated cyanobacterium Acaryochloris marina. Photosynth Res 74:97–107

    Article  CAS  PubMed  Google Scholar 

  • Akiyama M, Gotoh T, Kise H, Miyashita H, Mimuro M, Kobayashi M (2004) Stoichiometries of chlorophyll d′/PSI and chlorophyll a/PSII in a chlorophyll d-dominated cyanobacterium Acaryochloris marina. Jpn J Phycol 52:67–72

    Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84:5730–5734

    Article  CAS  PubMed  Google Scholar 

  • Beer-Romero P, Favinger JL, Gest H (1988) Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiol Lett 49:451–454

    Article  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    Article  CAS  PubMed  Google Scholar 

  • Braumann T, Vasmel H, Grimme LH, Amesz J (1986) Pigment composition of the photosynthetic membrane and reaction center of the green bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 848:83–91

    Article  CAS  Google Scholar 

  • Brereton RG, Sanders JKM (1983) Co-ordination and aggregation of bacteriochlorophyll a: an n.m.r. and electronic absorption study. J Chem Soc Perkin Trans 1:423–430

    Article  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biohys Acta 1318:322–373

    Article  CAS  Google Scholar 

  • Brettel K, Leibl W, Liebl U (1998) Electron transfer in the heliobacterial reaction center: evidence against a quinone-type electron acceptor functioning analogous to A1 in photosystem I. Biochim Biophys Acta 1363:175–181

    Article  CAS  PubMed  Google Scholar 

  • Brockmann H Jr, Lipinski A (1983) Bacteriochlorophyll g. A new bacterio-chlorophyll from Heliobacterium chlorum. Arch Microbiol 136:17–19

    Article  CAS  Google Scholar 

  • Brok M, Vasmel H, Horikx JTG, Hoff AJ (1986) Electron transport components of Heliobacterium chlorum investigated by EPR spectroscopy at 9 and 35 GHz. FEBS Lett 194:322–326

    Article  CAS  Google Scholar 

  • Büttner M, Xie D-L, Nelson H, Pinther W, Hauska G, Nelson N (1992a) Photosynthetic reaction center genes in green sulfur bacteria and in photosystem I are related. Proc Natl Acad Sci USA 89:8135–8139

    Article  PubMed  Google Scholar 

  • Büttner M, Xie D-L, Nelson H, Pinther W, Hauska G, Nelson N (1992b) The photosystem I-like P840-reaction center of the green S-bacteria is a homodimer. Biochim Biophys Acta 1101:154–156

    PubMed  Google Scholar 

  • Callahan PM, Cotton TM (1987) Assignment of bacteriochlorophyll a ligation state from absorption and resonance Raman spectra. J Am Chem Soc 109:7001–7007

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Phil Trans R Soc 361:969–1006

    Article  CAS  Google Scholar 

  • Clarke RH, Hotchandani S, Jagannathan SP, Leblanc RM (1982) Ligand effects on the triplet state of chlorophyll. Chem Phys Let 89:37–40

    Article  CAS  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45(2):316–354

    CAS  PubMed  Google Scholar 

  • Cotton TM, Van Duyne RP (1981) Characterization of bacteriochlorophyll interactions in vitro by resonance Raman spectroscopy. J Am Chem Soc 103:6020–6026

    Article  CAS  Google Scholar 

  • Cotton TM, Loach PA, Katz JJ, Ballschmiter K (1978) Studies of chlorophyll-chlorophyll and chlorophyll-ligand interactions by visible absorption and infrared spectroscopy at low temperatures. Photochem Photobiol 27:735–749

    Article  CAS  Google Scholar 

  • Deisenhofer J, Michel H (1989) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J 8:2149–2170

    CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398

    Article  CAS  PubMed  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK, Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure 2:925–936

    Article  CAS  PubMed  Google Scholar 

  • Evans TA, Katz JJ (1975) Evidence for 5- and 6-coordinated magnesium in bacteriochlorophyll a from visible absorption spectroscopy. Biochim Biohys Acta 396:414–426

    Article  CAS  Google Scholar 

  • Fiedor L (2006) Hexacoordination of bacteriochlorophyll in photosynthetic antenna LH1. Biochemistry 45:1910–1918

    Article  CAS  PubMed  Google Scholar 

  • Fiedor L, Kania A, Myśliwa-Kurdziel B, Orzeł Ł, Stochel G (2008) Understanding chlorophylls: central magnesium ion and phytyl as structural determinants. Biochim Biophys Acta 1777:1491–1500

    Article  CAS  PubMed  Google Scholar 

  • Fischer MR (1990) Photosynthetic electron transfer in Heliobacterium chlorum studied by EPR spectroscopy. Biochim Biophys Acta 1015:471–481

    Article  CAS  Google Scholar 

  • Fowler CF, Nugent NA, Fuller RC (1971) The isolation and characterization of a photochemically active complex from Chloropseudomonas ethylica. Proc Natl Acad Sci USA 68:2278–2282

    Article  CAS  PubMed  Google Scholar 

  • Frankenberg N, Hager-Braun C, Feiler U, Fuhrmann M, Rogl H, Schneebauer N, Nelson N, Hauska G (1996) P840-reaction centers from Chlorobium tepidum—quinone a nalysis and functional reconstitution into lipid vesicles. Photochem Photobiol 64:14–19

    Article  CAS  Google Scholar 

  • Fuller RC, Sprague SG, Gest H, Blankenship RE (1985) A unique photo-synthetic reaction center from Heliobacterium chlorum. FEBS Lett 182:345–349

    Article  CAS  Google Scholar 

  • Gest H (1994) Discovery of the heliobacteria. Photosynth Res 41:17–21

    Article  CAS  Google Scholar 

  • Hager-Braun C, Jarosch U, Hauska G, Nitschke W, Riedel A (1997) EPR studies of the terminal electron acceptors of the green sulfur bacterial reaction centre. Revisited. Photosynth Res 51:127–136

    Article  CAS  Google Scholar 

  • Hartwich G, Fiedor L, Simonin I, Cmiel E, Schäfer W, Noy D, Scherz A, Scheer H (1998) Metal-substituted bacteriochlorophylls. 1. Preparation and influence of metal and coordination on spectra. J Am Chem Soc 120:3675–3683

    Article  CAS  Google Scholar 

  • Hauska G (1988) Phylloquinone in photosystem I: are quinones the secondary electron acceptors in all types of photosynthetic reaction centers? Trends Biochem Sci 13:415–416

    Article  CAS  PubMed  Google Scholar 

  • Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A (1989) Occurrence of menaquinone as the sole isoprenoid quinone in the photosynthetic bacterium Heliobacterium chlorum. Arch Microbiol 151:378–379

    Article  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    Article  CAS  PubMed  Google Scholar 

  • Iemura T, Ohashi S, Miyashita H, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T, Kobayashi M (2008) Structural comparison of P740 and P700 based on their redox potentials. Photomed Photobiol 30:9–12

    CAS  Google Scholar 

  • Ikeda Y, Komura M, Watanabe M, Minami C, Koike H, Itoh S, Kashino Y, Satoh K (2008) Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1777:351–361

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Iwaki M, Ikegami I (2001) Modification of photosystem I reaction center by the extraction and exchange of chlorophylls and quinones. Biochim Biophys Acta 1507:115–138

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Okada N, Ohashi S, Nakazato M, Iwamoto K, Shiraiwa Y, Miyashita H, Kobayashi M (2009) Novel conversion of chlorophyll a into chlorophyll d catalyzed by extracts of vegetables and fruits. Phycologia 48(4):49–50

    Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauβ N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100:98–103

    Article  CAS  PubMed  Google Scholar 

  • Kania A, Fiedor L (2006) Steric control of bacteriochlorophyll ligation. J Am Chem Soc 128:454–458

    Article  CAS  PubMed  Google Scholar 

  • Kashiyama Y, Miyashita H, Ohkubo S, Ogawa NO, Chikaraishi Y, Takano Y, Suga H, Toyofuku T, Nomaki H, Kitazato H, Nagata T, Ohkouchi N (2008) Evidence of global chlorophyll d. Science 321:658

    Article  CAS  PubMed  Google Scholar 

  • Katz JJ, Strain HH, Leussing DL, Dougherty RC (1968) Chlorophyll-ligand interactions from nuclear magnetic resonance studies. J Am Chem Soc 90:784–791

    Article  Google Scholar 

  • Ke B (2001a) Photosynthesis: an overview. In: Govindjee (ed) Photosynthesis photobiochemistry and photobiophysics, vol 10. Kluwer Academic Publishers, Dordrecht, pp 1–46

  • Ke B (2001b) The green bacteria. II. The reaction center photochemistry and electron transport. In: Govindjee (ed) Photosynthesis, photobiochemistry and photobiophysics, vol 10. Kluwer Academic Publishers, Dordrecht, pp 159–178

  • Kjær B, Frigaard NU, Yang F, Zybailov B, Miller M, Golbeck JH, Scheller HV (1998) Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1. Biochemistry 37:3237–3242

    Article  PubMed  Google Scholar 

  • Kleinherenbrink FAM, Ikegami I, Haraishi A, Otte SCM, Amesz J (1993) Electron transfer in menaquinone-depleted membranes of Heliobacterium chlorum. Biochim Biophys Acta 1142:69–73

    Article  CAS  Google Scholar 

  • Kobayashi M (1996) Study of precise pigment composition of photosystem I-type reaction centers by means of normal-phase HPLC. J Plant Res 109:223–230

    Article  CAS  Google Scholar 

  • Kobayashi M, van de Meent EJ, Amesz J, Ikegami I, Watanabe T (1991a) Bacteriochlorophyll g epimer as a possible reaction center component of heliobacteria. Biochim Biophys Acta 1057:89–96

    Article  CAS  Google Scholar 

  • Kobayashi M, Watanabe T, Ikegami I, van de Meent EJ, Amesz J (1991b) Enrichment of bacteriochlorophyll g′ in membranes of Heliobacterium chlorum by ether extraction—unequivocal evidence for its existence in vivo. FEBS Lett 284:129–131

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, van de Meent EJ, Oh-oka H, Inoue K, Itoh S, Amesz J, Watanabe T (1992) Pigment composition of heliobacteria and green sulfur bacteria. In: Murata N (ed) Research in photosynthesis, vol 1. Kluwer Academic Publishers, Dordrecht, pp 393–396

    Google Scholar 

  • Kobayashi M, Hamano T, Akiyama M, Watanabe T, Inoue K, Oh-oka H, Amesz J, Yamamura M, Kise H (1998a) Light-independent isomerization of bacterio-chlorophyll g to chlorophyll a catalyzed by weak acid in vitro. Anal Chim Acta 365:199–203

    Article  CAS  Google Scholar 

  • Kobayashi M, Yamamura M, Akutsu S, Miyake J, Hara M, Akiyama M, Kise H (1998b) Successfully controlled isomerization and pheophytinization of bacteriochlorophyll b by weak acid in the dark in vitro. Anal Chim Acta 361:285–290

    Article  CAS  Google Scholar 

  • Kobayashi M, Akiyama M, Watanabe T, Kano H (1999) Exotic chlorophylls as key components of photosynthesis. Cur Top Plant Biol 1:17–35

    CAS  Google Scholar 

  • Kobayashi M, Oh-oka H, Akutsu S, Akiyama M, Tominaga K, Kise H, Nishida F, Watanabe T, Amesz J, Koizumi M, Ishida N, Kano H (2000) The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with Δ2, 6-phytadienol. Photosynth Res 63:269–280

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Watanabe S, Gotoh T, Koizumi H, Itoh Y, Akiyama M, Shiraiwa Y, Tsuchiya T, Miyashita H, Mimuro M, Yamashita T, Watanabe T (2005) Minor but key chlorophylls in photosystem II. Photosynth Res 84:201–207

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Akiyama M, Kise H, Watanabe T (2006a) Unusual tetrapyrrole pigments of photosynthetic antennae and reaction centers: specially-tailored chlorophylls. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 55–66

    Google Scholar 

  • Kobayashi M, Akiyama M, Kano H, Kise H (2006b) Spectroscopy and structure determination. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 79–94

    Google Scholar 

  • Koizumi H, Itoh Y, Hosoda S, Akiyama M, Hoshino T, Shiraiwa Y, Kobayashi M (2005) Serendipitous discovery of Chl d formation from Chl a with papain. Sci Tech Adv Mater 6:551–557

    Article  CAS  Google Scholar 

  • Krawczyk S (1989) The effects of hydrogen bonding and coordination interaction in visible absorption and vibrational spectra of chlorophyll a. Biochim Biophys Acta 976:140–149

    Article  CAS  Google Scholar 

  • Kumazaki S, Abiko K, Ikegami I, Iwaki M, Itoh S (2002) Energy equilibration and primary charge separation in chlorophyll d-based hotosystem I reaction center isolated from Acaryochloris marina. FEBS Lett 530:153–157

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto N, Setif P, Brettel K, Seo D, Sakurai H (1999) Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation. Biochemistry 37:12124–12137

    Article  CAS  Google Scholar 

  • Lancaster CRD, Ermler U, Michel H (1995) The structure of photosynthetic reaction centers from purple bacteria as revealed by X-ray crystallography. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 503–526

    Google Scholar 

  • Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blankenship RE, Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: structural implications and relations to other photosystems. Proc Natl Acad Sci USA 90:7124–7128

    Article  CAS  PubMed  Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR, Katz JJ (1987) Bacteriopheophytin g: properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84:2570–2574

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Tsuchiya T, Inoue H, Sakuragi Y, Itoh Y, Gotoh T, Miyashita H, Bryant DA, Kobayashi M (2005) The secondary electron acceptor of photosystem I in Gloeobacter violaceus PCC7421 is menaquinone-4 that is synthesized by a unique but unknown pathway. FEBS Lett 579:3493–3496

    Article  CAS  PubMed  Google Scholar 

  • Mironov AF (1996) Synthesis and properties of new chlorin and bacteriochlorin photosensitizers. Proc SPIE 2625:23–32

    Article  CAS  Google Scholar 

  • Mironov AF, Kozyrev AN, Perepyolkin PY (1994) New sensitizers for diagnosis and photodynamic therapy of malignant tissues. Proc SPIE 2078:186–192

    Article  CAS  Google Scholar 

  • Mironov AF, Ruziev RD, Lebedeva VS (2004) Synthesis and chemical transformations of N-hydroxy- and N-hydroxyalkylcycloimides of chlorin p6. Russ J Bioorg Chem 30:466–476

    Article  CAS  Google Scholar 

  • Miyamoto R, Mino H, Kondo T, Itoh S, Oh-oka H (2008) An electron spin-polarized signal of the P800+A1(Q) state in the homodimeric reaction center core complex of Heliobacterium modesticaldum. Biochemistry 47:4386–4393

    Article  CAS  PubMed  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M, Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    CAS  Google Scholar 

  • Muhiuddin IP, Rigby SEJ, Evans MCW, Amesz J, Heathcote P (1999) ENDOR and special TRIPLE resonance spectroscopy of photoaccumulated semiquinone electron acceptors in the reaction centers of green sulfur bacteria and heliobacteria. Biochemistry 38:7159–7167

    Article  CAS  PubMed  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131

    Article  CAS  PubMed  Google Scholar 

  • Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633

    Article  CAS  PubMed  Google Scholar 

  • Nabedryk E, Leibl W, Breton J (1996) FTIR spectroscopy of primary donor photooxidation in photosystem I, Heliobacillus mobilis, and Chlorobium limicola. Comparison with purple bacteria. Photosynth Res 48:301–308

    Article  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10(4):137–145

    Article  CAS  PubMed  Google Scholar 

  • Neerken S, Amesz J (2001) The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. Biochim Biophys Acta 1507:278–290

    Article  CAS  PubMed  Google Scholar 

  • Neerken S, Schmidt KA, Aartsma TJ, Amesz J (1999) Dynamics of energy conversion in reaction center core complexes of the green sulfur bacterium Prosthecochloris aestuarii at low temperature. Biochemistry 38:13216–13222

    Article  CAS  PubMed  Google Scholar 

  • Neerken S, Aartsma TJ, Amesz J (2000) Pathways of energy transformation in antenna reaction center complexes of Heliobacillus mobilis. Biochemistry 39:3297–3303

    Article  CAS  PubMed  Google Scholar 

  • Nitschke W, Feiler U, Lockau W, Hauska G (1987) The photosystem of the green sulfur bacterium Chlorobium limicola contains two early electron acceptors similar to photosystem I. FEBS Lett 218:283–286

    Article  CAS  Google Scholar 

  • Noy D, Yerushalmi R, Brumfeld V, Ashur I, Scheer H, Baldridge KK, Scherz A (2000) Optical absorption and computational studies of [Ni]-bacteriochlorophyll-a. New insight into charge distribution between metal and ligands. J Am Chem Soc 122:3937–3944

    Article  CAS  Google Scholar 

  • Nuijs AM, van Dorssen RJ, Duysens LNM, Amesz J (1985a) Excited states and primary photochemical reaction in the photosynthetic bacterium Heliobacterium chlorum. Proc Natl Acad Sci USA 82:6865–6868

    Article  PubMed  Google Scholar 

  • Nuijs AM, Vasmel H, Joppe HLP, Duysens LNM, Amesz J (1985b) Excited states and primary charge separation in the pigment system of the green photosynthetic bacterium Prosthecochloris aestuarii as studied by picosecond absorbance difference spectroscopy. Biochim Biophys Acta 807:24–34

    Article  CAS  Google Scholar 

  • Ohashi S, Miyashita H, Okada N, Iemura T, Watanabe T, Kobayashi M (2008a) Unique photosystems in Acaryochloris marina. Photosynth Res 98:141–149

    Article  CAS  PubMed  Google Scholar 

  • Ohashi S, Tsuchiya T, Iwamoto K, Miyashita H, Watanabe T, Shiraiwa Y, Mimuro M, Kobayshi M (2008b) Succession of co-factors in photosystem I. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis: energy from the Sun. Springer, Dordrecht, pp 1177–1180

    Google Scholar 

  • Ohkubo S, Miyashita H, Murakami A, Takeyama H, Tsuchiya T, Mimuro M (2006) Molecular detection of epiphytic Acaryochloris spp. on marine macroalgae. Appl Env Microbiol 72:7912–7915

    Article  CAS  Google Scholar 

  • Oh-oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83:177–186

    CAS  PubMed  Google Scholar 

  • Oh-oka H, Kakutani S, Matsubara H, Malkin R, Itoh S (1993) Isolation of the photoactive reaction center complex that contains three types of Fe-S centers and a cytochrome c subunit from the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum, strain Larsen. Plant Cell Physiol 34:93–101

    CAS  Google Scholar 

  • Okada N, Itoh S, Nakazato M, Miyashita H, Ohashi S, Kobayashi M (2009) Effective hydrolysis of chlorophyll a to yield chlorophyllide a by papain in aqueous acetone. Curr Topics Plant Biol 10:47–52

    Google Scholar 

  • Olson JM, Prince RC, Brune DC (1977) Reaction-center complexes from green bacteria. Brookhaven Symp Biol 28:238–246

    Google Scholar 

  • Permentier HP, Schmidt KA, Kobayashi M, Akiyama M, Hager-Braun C, Neerken S, Miller M, Amesz J (2000) Composition and optical properties of reaction center core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Photosynth Res 64:27–39

    Article  CAS  PubMed  Google Scholar 

  • Powls R, Redfearm ER (1969) Quinones of the chlorobacteriaceae. Properties and possible function. Biochim Biophys Acta 172:429–437

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Olson JM (1976) Some thermodynamic and kinetic properties of the primary photochemical reactions in a complex from a green photosynthetic bacterium. Biochim Biophys Acta 423:357–362

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Gest H, Blankenship RE (1985) Thermodynamic properties of the photochemical reaction center of Heliobacterium chlorum. Biochim Biophys Acta 810:377–384

    Article  CAS  Google Scholar 

  • Redfearm ER, Powls R (1968) The quinones of green photosynthetic bacteria. Biochem J 106:50P

    Google Scholar 

  • Rigby SEJ, Thapar R, Evans MCW, Heathcote P (1994) The electronic structure of P840+: the primary donor of the Chlorobium limicola f. sp. thiosulphatophilum photosynthetic reaction centre. FEBS Lett 350:24–28

    Article  CAS  PubMed  Google Scholar 

  • Rigby SEJ, Evans MCW, Heathcote P (2001) Electron nuclear double resonance (ENDOR) spectroscopy of radicals in photosystem I and related Type 1 photosynthetic reaction centres. Biochim Biophys Acta 1507:247–259

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436

    Article  CAS  Google Scholar 

  • Robotham B, O’Malley PJ (2008) Density functional studies of the spin density distribution of the P865 cation radical in the reaction center of Rb sphaeroides. Biochemistry 47:13261–13266

    Article  CAS  PubMed  Google Scholar 

  • Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 1–26

    Google Scholar 

  • Schoeder H-U, Lockau W (1986) Phylloquinone copurifies with the large subunit of photosystem I. FEBS Lett 199:23–27

    Article  CAS  Google Scholar 

  • Steiner R, Cmiel E, Scheer H (1983) Chemistry of bacteriochlorophyll b: identification of some (photo)oxidation products. Z Naturforsch 38c:748–752

    CAS  Google Scholar 

  • Sybesma C, Vredenberg WJ (1963) Evidence for a reaction center P840 in the green photosynthetic bacterium Chloropseudomonas ethylicum. Biochim Biophys Acta 75:439–441

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Hirata K, Katoh S (1985) Multiple forms of P700-chlorophyll a-protein complexes from Synechococcus sp.: the iron, quinone and carotenoid contents. Photosynth Res 6:183–192

    Article  CAS  Google Scholar 

  • Takahashi K, Itoh Y, Akiyama M, Watanabe T, Inoue K, Oba T, Umetsu M, Kobayashi M (2005) Delicate distinction between absorption spectra of ‘normal’ and ‘prime’ bacteriochlorophylls. In: van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives. Alliance Communications Group, Kansas, pp 46–48

    Google Scholar 

  • Takaichi S, Oh-oka H (1999) Pigment composition in the reaction center complex from the thermophilic green sulfur bacterium, Chlorobium tepidum: carotenoid glucoside esters, menaquinone and chlorophylls. Plant Cell Physiol 40:691–694

    CAS  Google Scholar 

  • Trost JT, Blankenship RE (1989) Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 28:9898–9904

    Article  CAS  PubMed  Google Scholar 

  • Trost JT, Brune DC, Blankenship RE (1992) Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to photosystem I. Photosynth Res 32:11–22

    Article  CAS  PubMed  Google Scholar 

  • Van de Meent EJ, Kleinherenbrink FAM, Amesz J (1990) Purification and properties of an antenna-reaction center complex from heliobacteria. Biochim Biophys Acta 1015:223–230

    Article  Google Scholar 

  • Van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Amesz J, Watanabe T (1991) Identification of 81-hydroxychlorophyll a as a functional reaction center pigment in heliobacteria. Biochim Biophys Acta 1058:356–362

    Article  Google Scholar 

  • Van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Otte SCM, Inoue K, Watanabe T, Amesz J (1992) The nature of the primary electron acceptor in green sulfur bacteria. Biochim Biophys Acta 1102:371–378

    Article  Google Scholar 

  • Watanabe T, Hongu A, Honda K, Nakazato M, Konno M, Saitoh S (1984) Preparation of chlorophylls and pheophytins by isocratic liquid chromatography. Anal Chem 56:251–256

    Article  CAS  Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng J, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk H, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of bacteria and Archaea. Nature 462:1056–1060

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730

    Article  CAS  PubMed  Google Scholar 

  • Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP, Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. Proc Natl Acad Sci USA 85:7993–7997

    Article  CAS  PubMed  Google Scholar 

  • Yoshida E, Nakamura A, Watanabe T (2003) Reversed-phase HPLC determination of chlorophyll a and naphthoquinones in photosystem I of red algae: existence of two menaquinone-4 molecules in photosystem I of Cyanidium caldarium. Anal Sci 19:1001–1005

    Article  CAS  PubMed  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauβ N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. T. Ogura, Dr. S. Yamaki, Dr. M. Kobayashi and Dr. M. Yamaguchi (Shimadzu Co. Ltd.) for their technical assistance. We would like to thank Prof. H. Sakurai (Kanagawa University) for his useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohashi, S., Iemura, T., Okada, N. et al. An overview on chlorophylls and quinones in the photosystem I-type reaction centers. Photosynth Res 104, 305–319 (2010). https://doi.org/10.1007/s11120-010-9530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9530-3

Keywords

Navigation