Skip to main content
Log in

The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria

  • Review Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Ongoing work has led to the identification of most of the biochemical steps in carotenoid biosynthesis in chlorophototrophic bacteria. In carotenogenesis, a relatively small number of modifications leads to a great diversity of carotenoid structures. This review examines the individual steps in the pathway, discusses how each contributes to structural diversity among carotenoids, and summarizes recent progress in elucidating the biosynthetic pathways for carotenoids in chlorophototrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

Cab.:

Chloracidobacterium

Cfx. :

Chloroflexus

Chb. :

Chlorobaculum

Chl:

Chlorophyll

CRTISO:

Carotenoid isomerase (plants)

DMAPP:

Dimethylallyl pyrophosphate

E. :

Escherichia

Erb. :

Erythrobacter

FPP:

Farnesyl pyrophosphate

GGPP:

Geranylgeranyl pyrophosphate

Glb. :

Gloeobacter

GSB:

Green sulfur bacteria

Hbc. :

Heliobacillus

Hbm. :

Heliobacterium

Hps. :

Herpetosiphon

Htx. :

Heliothrix

IPP:

Isopentenyl diphosphate

MEP:

2C-methyl-D-erythritol 4-phosphate

ORF:

Open reading frame

PDS:

Phytoene desaturase (plants)

PS:

Photosystem

PSB:

Purple sulfur bacteria

Rfx. :

Roseiflexus

Rhb. :

Rhodobacter

Rps. :

Rhodopseudomonas

Rsp. :

Rhodospirillum

Rvx. :

Rubrivivax

S. :

Staphylococcus

ZDS:

ζ-carotene desaturase (plants)

References

  • Aakermann T, Skulberg OM, Liaaen-Jensen S (1992) Carotenoids of blue-green algae. 12. A comparison of the carotenoids of the strains of Oscillatoria and Spirulina (cyanobacteria). Biochem Syst Ecol 20:761–769

    CAS  Google Scholar 

  • Albrecht M, Linden H, Sandmann G (1996) Biochemical characterization of purified ζ-carotene desaturase from Anabaena PCC 7120 after expression in Escherichia coli. Eur J Biochem 236:115–120

    PubMed  CAS  Google Scholar 

  • Albrecht M, Ruther A, Sandmann G (1997) Purification and biochemical characterization of a hydroxyneurosporene desaturase involved in the biosynthetic pathway of the carotenoid spheroidene in Rhodobacter sphaeroides. J Bacteriol 179:7462–7467

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    PubMed  CAS  Google Scholar 

  • Andrews AG, Liaaen-Jensen S (1972) Carotenoids of Thiorhodaceae 9. Structural elucidation of five minor carotenoids from Thiothece gelatinosa. Acta Chem Scand 26:2194–2204

    Google Scholar 

  • Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51:629–659

    PubMed  CAS  Google Scholar 

  • Armstrong GA, Hearst JE (1996) Genetics and molecular biology of carotenoid biosynthesis. FASEB J 10:228–237

    PubMed  CAS  Google Scholar 

  • Armstrong GA, Schmidt A, Sanfmann G, Hearst JE (1990) Genetic and biochemical characterization of carotenoid biosynthesis mutants of Rhodobacter capsulatus. J Biol Chem 265:8329–8338

    PubMed  CAS  Google Scholar 

  • Auldridge ME, McCarty DR, Klee DE (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321

    PubMed  CAS  Google Scholar 

  • Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    PubMed  CAS  Google Scholar 

  • Balashov SP, Imasheva ES, Lanyi JK (2006) Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin. Biochemistry 45:10998–11004

    PubMed  CAS  Google Scholar 

  • Bartley GE, Scolnik PA, Beyer P (1999) Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and ζ-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene. Eur J Biochem 259:396–403

    PubMed  CAS  Google Scholar 

  • Bautista JA, Rappaport F, Guergova-Kuras M, Cohen RO, Golbeck JG, Wang JY, Beal D, Diner BA (2005) Biochemical and biophysical characterisation of photosystem I from phytoene desaturase and ζ-carotene desaturase deletion mutants of Synechocystis sp. PCC 6803. J Biol Chem 280:20030–20041

    PubMed  CAS  Google Scholar 

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich S, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    PubMed  Google Scholar 

  • Bialek-Bylka GE, Fujii R, Chen CH, Oh-oka H, Kamiesu A, Satoh K, Koike H, Koyama Y (1998) 15-cis-carotenoids found in the reaction center of a green sulfur bacterium Chlorobium tepidum and in the Photosystem I reaction center of a cyanobacterium Synechococcus vulcanus. Photosynth Res 58:135–142

    CAS  Google Scholar 

  • Boronowsky U, Wenk SO, Schneider D, Jager C, Rogner M (2001) Isolation of membrane protein subunits in their native state: evidence for selective binding of chlorophyll and carotenoid to the b 6 subunit of the cytochrome b 6 f complex. Biochim Biophys Acta 1506:55–66

    PubMed  CAS  Google Scholar 

  • Boucher Y, Doolittle WF (2000) The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol 37:703–716

    PubMed  CAS  Google Scholar 

  • Bramley P, Sandmann G (1985) In vitro and in vivo biosynthesis of xanthophylls by the cyanobacterium Aphanocapsa. Phytochemistry 24:2919–2922

    CAS  Google Scholar 

  • Breitenbach J, Sandmann G (2005) ζ-carotene cis-isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta 220:785–793

    PubMed  CAS  Google Scholar 

  • Breitenbach J, Fernandez-Gonzalez B, Vioque A, Sandmann G (1998) A higher-plant type ζ-carotene desaturase in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 36:725–732

    PubMed  CAS  Google Scholar 

  • Breitenbach J, Vioque A, Sandmann G (2001) Gene sll0033 from Synechocystis 6803 encodes a carotene isomerase involved in the biosynthesis of all-E lycopene. Z Naturforsch 56:915–17

    CAS  Google Scholar 

  • Britton G, Singh RK, Goodwin TW, Ben-Aziz A (1975) The carotenoids of Rhodomicrobium vannielii (Rhodospirillaceae) and the effect of diphenylamine on the carotenoid composition. Phytochemistry 14:2427–2433

    CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook. Birkhauser, Boston, MA

    Google Scholar 

  • Bryant DA, Frigaard N-U (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496

    PubMed  CAS  Google Scholar 

  • Caumette P, Baulaigue R, Matheron R (1991) Thiocapsa halophila sp. nov., a novel halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155:170–176

    Google Scholar 

  • Caumette P, Guyoneaud R, Imhoff JF, Suling J, Gorenko V (2004) Thiocapsa marina sp nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Int J Syst Evol Microbiol 54:1031–1036

    PubMed  CAS  Google Scholar 

  • Chamovitz D, Misawa N, Sandmann G, Hirschberg J (1992) Molecular cloning and expression in Escherichia coli of a cyanobacterial gene coding for phytoene synthase, a carotenoid biosynthesis enzyme. FEBS Lett 296:305–310

    PubMed  CAS  Google Scholar 

  • Cheng Q (2006) Structural diversity and functional novelty of new carotenoid biosynthesis genes. J Ind Microbiol Biotechnol 33:552–559

    PubMed  CAS  Google Scholar 

  • Cogdell RJ (1988) The functions of pigments in chloroplasts. In: Goodwin TW (ed) Plant pigments. Academic Press, London, pp 222–224

    Google Scholar 

  • Cunningham FX Jr, Gantt E (2001) One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases. Proc Nat Acad Sci USA 98:2905–2910

    PubMed  CAS  Google Scholar 

  • Cunningham FX Jr, Sun Z, Chamovitz D, Hirschberg J, Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp. strain PCC7942. Plant Cell 6:1107–1121

    PubMed  CAS  Google Scholar 

  • Davies BH (1970) A novel sequence for phytoene dehydrogenation in Rhodospirillum rubrum. Biochem J 116:93–99

    PubMed  CAS  Google Scholar 

  • de la Torre JR, Christianson LM, Béjà O, Suzuki MT, Karl DM, Heidelberg J, DeLong EF (2003) Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc Natl Acad Sci USA 100:12830–12835

    PubMed  Google Scholar 

  • Dubey VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28:637–646

    PubMed  CAS  Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelon WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514

    PubMed  CAS  Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    PubMed  CAS  Google Scholar 

  • Fernandez-Gonzales B, Sandmann G, Vioque A (1997) A new type of asymmetrically acting β-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 272:9728–9733

    Google Scholar 

  • Frank HA, Brudvig GW (2004) Redox functions of carotenoids in photosynthesis. Biochemistry 43:8607–8615

    PubMed  CAS  Google Scholar 

  • Fraser PD, Misawa N, Linden H, Yamano S, Kobayashi K, Sandmann G (1992) Expression in Esherichia coli, purification, and reactivation of the recombinant Erwinia uredovora phytoene desaturase. J Biol Chem 267:19891–19895

    PubMed  CAS  Google Scholar 

  • Fraser PD, Linden H, Sandmann G (1993) Purification and reactivation of recombinant Synechococcus phytoene desaturase from an overexpressing strain of Escherichia coli. Biochem J 291:687–692

    PubMed  CAS  Google Scholar 

  • Fraser NJ, Hashimoto H, Cogdell R (2002) Carotenoids and bacterial photosynthesis: the story so far…. Photosynth Res 70:249–256

    Google Scholar 

  • Frigaard N-U, Maresca JA, Yunker CE, Jones AD, Bryant DA (2004) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186:5210–5220

    PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P, Krauss N (2001) Structure of photosystem I. Biochim Biophys Acta 1507:5–31

    PubMed  CAS  Google Scholar 

  • Garcia Costas AM, Graham JE, Bryant DA (2008) Ketocarotenoids in chlorosomes of Candidatus Chloracidobacterium thermophilum. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Energy from the sun. Springer, Dordrecht, The Netherlands, pp 1167–1170

    Google Scholar 

  • Garcia-Asua G, Lang HP, Cogdell RJ, Hunter CN (1998) Carotenoid diversity: a modular role for the phytoene desaturase step. Trends Plant Sci 3:445–449

    Google Scholar 

  • Garcia-Asua G, Cogdell RJ, Hunter CN (2002) Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola. Mol Microbiol 44:233–244

    PubMed  CAS  Google Scholar 

  • Gich F, Airs RL, Danielsen M, Keely BJ, Abella CA, Garcia-Gil J, Miller M, Borrego CM (2003) Characterization of the chlorosome antenna of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001. Arch Microbiol 180:417–426

    PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Bibbs L, Cho JC, Stapels MD, Desiderio R, Vergin KL, Rappé MS, Laney S, Wilhelm LJ, Tripp HJ, Mathur EJ, Barofsky DF (2005) Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:82–85

    PubMed  CAS  Google Scholar 

  • Giraud E, Hannibal L, Fardoux J, Jaubert M, Jourand P, Dreyfus B, Sturgis JN, Vermeglio A (2004) Two distinct crt gene clusters for two different functional classes of carotenoid in Bradyrhizobium. J Biol Chem 279:15076–15083

    PubMed  CAS  Google Scholar 

  • Giuliano G, Pollock D, Scolnik PA (1986) The gene crtI mediates the conversion of phytoene into colored carotenoids in Rhodopseudomonas capsulata. J Biol Chem 261:12925–12929

    PubMed  CAS  Google Scholar 

  • Goeriche R, Repeta D (1992) The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine prokaryote. Limnol Oceanogr 37:425–433

    Google Scholar 

  • Gomez Maqueo Chew A, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129

    Google Scholar 

  • Gómez-Consarnau L, González JM, Coll-Lladó M, Gourdon P, Pascher T, Neutze R, Pedrós-Alió C, Pinhassi J (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213

    PubMed  Google Scholar 

  • Graham JE (2008) Carotenoid biosynthesis in Synechococcus sp. PCC 7002: identification of genes, enzymes and carotenoids. Ph D thesis, The Pennsylvania State University

  • Graham JE, Lecomte JTJ, Bryant DA (2008) Synechoxanthin: an aromatic C40 xanthophyll is a major carotenoid in the cyanobacterium Synechococcus sp. PCC 7002. J Nat Prod, submitted for publication

  • Gregonis DE, Rilling HC (1974) The Stereochemistry of trans-phytoene synthesis. Some observations on lycopersene as a carotenoid precursor and a mechanism for the synthesis of trans lycopene. Biochemistry 13:1538–1542

    PubMed  CAS  Google Scholar 

  • Hanada S, Hiraishi A, Shimada K, Matsuura K (1995) Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 45:676–681

    Article  PubMed  CAS  Google Scholar 

  • Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193

    PubMed  CAS  Google Scholar 

  • Harada J, Nagashima KVP, Takaichi S, Misawa N, Matsuura K, Shimada K (2001) Phytoene desaturase, CrtI, of the purple photosynthetic bacterium, Rubrivivax gelatinosus, produces both neurosporene and lycopene. Plant Cell Physiol 42:1112–1118

    PubMed  CAS  Google Scholar 

  • Hausmann A, Sandmann G (2000) A single five-step desaturase is involved in the carotenoid biosynthesis pathway to beta-carotene and torulene in Neurospora crassa. Fungal Genet Biol 30:147–153

    PubMed  CAS  Google Scholar 

  • Hemmi H, Ikejiri S, Nakayama T, Nishino T (2003) Fusion-type lycopene β-cyclase from a thermoacidophilic archaeon Sulfolobus solfataricus. Biochem Biophys Res Comm 305:586–591

    PubMed  CAS  Google Scholar 

  • Hesse K, Dittmann E, Borner T (2001) Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol Ecol 37:39–43

    CAS  Google Scholar 

  • Hirabiayashi H, Ishii T, Takaichi S, Inoue K, Uehara K (2004) The role of carotenoids in the brown-colored sulfur bacterium Chlorobium phaeobacteroides. Photochem Photobiol 79:280–285

    Google Scholar 

  • Holt JG, Lewin RA (1968) Herpetosiphon aurantiacus gen. et sp. n., a new filamentous gliding organism. J Bacteriol 95:2407–2408

    PubMed  CAS  Google Scholar 

  • Hundle BS, O’Brien DA, Alberti M, Meyer P, Hearst JA (1992) Functional expression of a zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc Nat Acad Sci USA 89:9321–9325

    PubMed  CAS  Google Scholar 

  • Hunter WN (2007) The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem 282:21573–21577

    PubMed  CAS  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Sanger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–911

    PubMed  CAS  Google Scholar 

  • Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE (2005) The structure of a retinal-forming carotenoid oxygenase. Science 308:267–269

    PubMed  CAS  Google Scholar 

  • Kovács AT, Rákhely G, Kovács KL (2003) Genes involved in the biosynthesis of the photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Appl Environ Microbiol 69:3093–3102

    PubMed  Google Scholar 

  • Krubasik P, Sandmann G (2000a) A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol Gen Genet 263:423–432

    PubMed  CAS  Google Scholar 

  • Krubasik P, Sandmann G (2000b) Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem Soc Trans 28:806–810

    PubMed  CAS  Google Scholar 

  • Krueger BP, Scholes GD, Jimenez R, Fleming GR (1998) Electronic excitation transfer from carotenoid to bacteriochlorophyll in the purple bacterium Rhodopseudomonas acidophila. J Phys Chem B 102:2284–2292

    CAS  Google Scholar 

  • Krugel H, Krubasik P, Weber K, Saluz HP, Sandmann G (1999) Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim Biophys Acta 1439:57–64

    PubMed  CAS  Google Scholar 

  • Kumar PA, Srinivas TNR, Sasikala C, Ramana CV (2007) Halochromatium roseum sp. nov., a non-motile phototrophic gammaproteobacterium with gas vesicles, and emended description of the genus Halochromatium. Int J Syst Evol Microbiol 57:2110–2113

    PubMed  CAS  Google Scholar 

  • Kushwaha SC, Kates M (1979) Effect of nicotine on biosynthesis of C50 carotenoids in Halobacterium cutirubrum. Can J Biochem 54:824–829

    Google Scholar 

  • Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627

    PubMed  CAS  Google Scholar 

  • Lagarde D, Vermaas WFJ (1999) The zeaxanthin biosynthesis enzyme β-carotene hydroxylase is involved in myxoxanthophyll synthesis in Synechocystis sp. PCC 6803. FEBS Lett 454:247–245

    PubMed  CAS  Google Scholar 

  • Lakatos M, Bilger W, Budel B (2001) Carotenoid composition of terrestrial Cyanobacteria: response to natural light conditions in open rock habitats in Venezuela. Eur J Phycol 36:367–375

    Google Scholar 

  • Lang HP, Cogdell RJ, Takaichi S, Hunter CN (1995) Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides. J Bacteriol 177:2064–2073

    PubMed  CAS  Google Scholar 

  • Lee PC, Mijts BN, Schmidt-Dannert C (2004) Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 65:538–546

    PubMed  CAS  Google Scholar 

  • Leutwiler LS, Chapman DJ (1978) Biosynthesis of carotenoids in Rhodomicrobium vannielii. FEBS Lett 89:248–252

    PubMed  CAS  Google Scholar 

  • Li F, Murillo C, Wurtzel ET (2007) Maize y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiol 144:1181–1189

    PubMed  CAS  Google Scholar 

  • Liaaen-Jensen S (1965) Bacterial carotenoids. XVIII. Aryl carotenoids from Phaeobium. Acta Chemica Scand 19:1025–1030

    Google Scholar 

  • Liang C, Zhao F, Wei W, Wen Z, Qin S (2006) Carotenoid biosynthesis in cyanobacteria: structural and evolutionary scenarios based on comparative genomics. Int J Biol Sci 2:197–207

    PubMed  CAS  Google Scholar 

  • Linden H, Misawa N, Chamovitz D, Pecker I, Hirschberg J, Sandmann G (1991) Functional complementation in Escherichia coli of different phytoene desaturase genes and analysis of accumulated carotenes. Z Naturforsch 46:1045–1051

    CAS  Google Scholar 

  • Liu Y, Wang H, Ye H-C, Li G-F (2005) Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering. J Integ Plant Biol 47:769–782

    CAS  Google Scholar 

  • Liu CI, Liu GY, Song Y, Yin F, Hensler ME, Jeng WY, Nizet V, Wang AH, Oldfield E (2008) A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319:1391–1394

    PubMed  CAS  Google Scholar 

  • Lozier RH, Bogomolni RA, Stoeckenius W (1975) Bacteriorhodopsin: light-driven proton pump in Halobacterium halobium. Biophys J 15:955–962

    PubMed  CAS  Google Scholar 

  • Macpherson AN, Arellano JB, Fraser NJ, Cogdell RJ, Gillbro T (2001) Efficient energy transfer from the carotenoid S2 state in a photosynthetic light-harvesting complex. Biophys J 80:923–930

    PubMed  CAS  Google Scholar 

  • Marasco EK, Vay K, Schmidt-Dannert C (2006) Identification of carotenoid cleavage dioxygenases from Nostoc sp. PCC 7120 with different cleavage activities. J Biol Chem 281:31583–31593

    PubMed  CAS  Google Scholar 

  • Maresca JA (2007) The genetic basis for pigment variation among green sulfur bacteria. Ph D thesis, The Pennsylvania State University

  • Maresca JA, Bryant DA (2006) Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 188:6217–6223

    PubMed  CAS  Google Scholar 

  • Maresca JA, Graham JE, Wu M, Eisen J, Bryant DA (2007) Identification of a fourth type of carotenoid cyclase in photosynthetic organisms. Proc Natl Acad Sci USA 104:11784–11789

    PubMed  CAS  Google Scholar 

  • Martinez A, Bradley AS, Waldbauer JR, Summons RE, Delong EF (2007) Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc Nat Acad Sci USA 104:5590–5595

    PubMed  CAS  Google Scholar 

  • Martinez-Ferez I, Fernandez-Gonzalez B, Sandmann G, Vioque A (1994) Cloning and expression in Escherichia coli the gene coding for phytoene synthase from the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1218:145–152

    PubMed  CAS  Google Scholar 

  • Masamoto K, Misawa N, Kaneko T, Kikuno R, Toh H (1998) β-carotene hydroxylase gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 39:560–564

    PubMed  CAS  Google Scholar 

  • Masamoto K, Wada H, Kaneko T, Takaichi S (2001) Identification of a gene required for cis-to-trans carotene isomerization in carotenogenesis of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42:1398–1402

    PubMed  CAS  Google Scholar 

  • Math SK, Hearst JE, Poulter CD (1992) The crtE gene in Erwinia herbicola encodes geranylgeranyl diphosphate synthase. Proc Nat Acad Sci USA 89:6761–6764

    PubMed  CAS  Google Scholar 

  • Matsumura H, Takeyama H, Kusakabe E, Burgess JG, Matsunanga T (1997) Cloning, sequencing, and expressing the carotenoid biosynthesis genes, lycopene cyclase and phytoene desaturase, from the aerobic photosynthetic bacterium Erythrobacter longus sp. strain Och101 in Escherichia coli. Gene 189:169–174

    PubMed  CAS  Google Scholar 

  • Maudinas B, Herber R, Villoutreix J (1974) Occurrence of tran-phyotene in microorganisms grown in the absence of carotenogenesis inhibitors. Biochim Biophys Acta 348:357–360

    PubMed  CAS  Google Scholar 

  • McCarren J, DeLong EF (2007) Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. Environ Microbiol 9:846–858

    PubMed  CAS  Google Scholar 

  • Mijts BN, Lee PC, Schmidt-Dannert C (2004) Engineering carotenoid biosynthetic pathways. Meth Enzymol 388:315–329

    PubMed  CAS  Google Scholar 

  • Mimuro M, Katoh T (1991) Carotenoids in photosynthesis: absorption, transfer and dissipation of light energy. Pure Appl Chem 63:123–130

    CAS  Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712

    PubMed  CAS  Google Scholar 

  • Misawa N, Kajiwara S, Kondo K, Yokoyama A, Satomi Y, Saito T, Miki W, Ohtani T (1995) Canthaxanthin biosynthesis by the conversion of methylene to keto groups in the hydrocarbon β-carotene by a single gene. Biochem Biophys Res Comm 209:867–876

    PubMed  CAS  Google Scholar 

  • Miskiewicz E, Ivanov AG, Williams JP, Khan MU, Falk S, Huner NPA (2000) Photosynthetic acclimation of the filamentous cyanobacterium, Plectonema boryanum UTEX 485, to temperature and light. Plant Cell Phys 41:767–775

    CAS  Google Scholar 

  • Mochimaru M, Masukawa H, Takaichi S (2005) The cyanobacterium Anabaena sp. PCC 7120 has two distinct β-carotene ketolases: CrtO for echinenone and CrtW for ketomyxol synthesis. FEBS Lett 579:6111–6114

    PubMed  CAS  Google Scholar 

  • Mohamed HE, Vermaas WFJ (2004) Slr1293 in Synechocystis sp. strain PCC 6803 is the C-3′, 4′ desaturase (CrtD) involved in myxoxanthophyll biosynthesis. J Bacteriol 186:5621–5628

    PubMed  CAS  Google Scholar 

  • Mohamed HE, Vermaas WFJ (2006) Sll0254 (CrtL(diox)) is a bifunctional lycopene cyclase/dioxygenase in cyanobacteria producing myxoxanthophyll. J Bacteriol 188:3337–3344

    PubMed  CAS  Google Scholar 

  • Moskalenko AA, Makhevna ZK, Fiedor L, Scheer H (2005) Effects of carotenoid inhibition on the photosynthetic RC-LHI complex in purple sulphur bacterium Thiorhodospira sibirica. Photosynth Res 86:71–80

    PubMed  CAS  Google Scholar 

  • Nagae H, Kakitani T, Katoh T, Mimuro M (1993) Calculation of the excitation transfer-matrix elements between the S(2) or S(1) state of carotenoid and the S(2) or S(1) state of bacteriochlorophyll. J Chem Phys 98:8012–8023

    CAS  Google Scholar 

  • Neudert U, Martinez-Ferez IM, Fraser PD, Sandmann G (1998) Expression of an active phytoene synthase from Erwinia uredovora and biochemical properties of the enzyme. Biochim Biophys Acta 1392:51–58

    PubMed  CAS  Google Scholar 

  • Nishida Y, Adachi K, Kasai H, Shizuri Y, Shindo K, Sawabe A, Komemushi S, Miki W, Misawa N (2005) Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2, 2′-beta-hydroxylase, from Brevundimonas sp. strain SD212 and a combinatorial biosynthesis of new or rare xanthophylls. Appl Environ Microbiol 71:4286–4296

    PubMed  CAS  Google Scholar 

  • Okada K, Minehira M, Zhu X, Suzuki K, Nakagawa T, Matsuda H, Kawamukai M (1997) The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. J Bacteriol 179:3058–3060

    PubMed  CAS  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332

    PubMed  CAS  Google Scholar 

  • Peck RF, Echevarri-Erasun C, Johnson EA, Ng WV, Kennedy SP, Hood L, DasSarma S, Krebs MP (2001) brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum. J Biol Chem 276:5739–5744

    PubMed  CAS  Google Scholar 

  • Peck RF, Johnson EA, Krebs MP (2002) Identification of a lycopene beta-cyclase required for bacteriorhodopsin biogenesis in the archaeon Halobacterium salinarum. J Bacteriol 184:2889–2897

    PubMed  CAS  Google Scholar 

  • Pfander H (1994) C45- and C50-carotenoids. Pure Appl Chem 66:2369–2374

    CAS  Google Scholar 

  • Pierson BK, Giovannoni SJ, Stahl DA, Castenholz RW (1985) Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142:164–167

    PubMed  CAS  Google Scholar 

  • Pinta V, Ouchane S, Picaud M, Takaichi S, Astier C, Reiss-Husson F (2003) Characterization of unusual hydroxy- and ketocarotenoids in Rubrivivax gelatinosus: involvement of enzyme CrtF or CrtA. Arch Microbiol 179:354–362

    PubMed  CAS  Google Scholar 

  • Psencik J, Ma YZ, Arellano JB, Garcia-Gil J, Holzwarth AR, Gillbro T (2002) Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Photosynth Res 71:5–18

    PubMed  CAS  Google Scholar 

  • Qureshi N, Porter JW (1981) Conversion of acetyl-coenzyme A to isopentenyl pyrophosphate. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds vol 1. Wiley, New York, pp 47–94

    Google Scholar 

  • Raisig A, Sandmann G (2001) Functional properties of diapophytoene and related desaturases of C30 and C40 carotenoid biosynthetic pathways. Biochim Biophys Acta 1533:164–170

    PubMed  CAS  Google Scholar 

  • Raisig A, Bartley G, Scolnik P, Sandmann G (1996) Purification in an active state and properties of the 3-step phytoene desaturase from Rhodobacter capsulatus overexpressed in Escherichia coli. J Biochem 119:559–564

    PubMed  CAS  Google Scholar 

  • Rieder C, Strauss G, Fuchs G, Arigoni D, Bacher A, Eisenreich W (1998) Biosynthesis of the diterpene verrucosan-2β-ol in the phototrophic eubacterium Chloroflexus aurantiacus. J Biol Chem 273:18099–18108

    PubMed  CAS  Google Scholar 

  • Ritz T, Damjanovic A, Schulten K, Zhang J-P, Koyama Y (2000) Efficient light harvesting through carotenoids. Photosynth Res 66:125–144

    PubMed  CAS  Google Scholar 

  • Rohdich F, Bacher A, Eisenreich W (2004) Perspectives in anti-infective drug design: the late steps in the biosynthesis of the universal terpenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate. Bioorg Chem 32:292–308

    PubMed  CAS  Google Scholar 

  • Ruch S, Beyer P, Ernst H, Al-Babili S (2005) Retinal biosynthesis in eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol Microbiol 55:1015–1024

    PubMed  CAS  Google Scholar 

  • Sabehi G, Loy A, Jung K-H, Partha R, Spudich JL, Isaacson T, Hirschberg J, Wagner M, Béjà O (2005) New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol 3:1409–1417

    CAS  Google Scholar 

  • Sandmann G (1991) Light-dependent switch from formation of poly-cis carotenes to all-trans carotenoids in the Scenedesmus mutant C-6D. Arch Microbiol 155:229–233

    CAS  Google Scholar 

  • Sandmann G, Misawa N (1992) New functional assignment of the carotenogenic genes crtB and crtE with constructs of these genes from Erwinia species. FEMS Microbiol Lett 90:253–258

    CAS  Google Scholar 

  • Santoyo S, Herrero M, Senorans FJ, Cifuentes A, Ibanez E, Jaime L (2006) Functional characterization of pressurized liquid extracts of Spirulina platensis. Eur Food Res Technol 224:75–81

    CAS  Google Scholar 

  • Schafer L, Vioque A, Sandmann G (2005) Functional in situ evaluation of photosynthesis-protecting carotenoids in mutants of the cyanobacterium Synechocystis sp. PCC 6803. J Photochem Photobiol B 78:195–201

    PubMed  Google Scholar 

  • Schagerl M, Donabaum K (2003) Patterns of major photosynthetic pigments in freshwater algae. 1. Cyanoprokaryota, Rhodophyta, and Cryptophyta. Int J Limnol 39:35–47

    Google Scholar 

  • Schagerl M, Muller B (2006) Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. J Plant Phys 163:709–716

    CAS  Google Scholar 

  • Scherzinger D, Ruch S, Kloer DP, Wilde A, Al-Babili S (2006) Retinal is formed from apo-carotenoids in Nostoc sp. 7120: in vitro characterization of an apo-carotenoid oxygenase. Biochem J 398:361–369

    PubMed  CAS  Google Scholar 

  • Schluter L, Garde K, Kaas H (2004) Detection of the toxic cyanobacteria Nodularia spumigena by means of a 4-keto-myxoxanthophyll-like pigment in the Baltic Sea. Marine Ecol Prog Series 275:69–78

    Google Scholar 

  • Schmidt K (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain Ok-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230. Arch Microbiol 124:21–31

    CAS  Google Scholar 

  • Schmidt K, Liaaen-Jensen S (1973) Bacterial carotenoids. XLII. New keto-carotenoids from Rhodopseudomonas globiformis (Rhodospirillaceae). Acta Chem Scand 27:3040–3052

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Boger P, Sandmann G (1997) Phytoene desaturase: heterologous expression in an active state, purification, and biochemical properties. Protein Expres Purif 10:175–179

    CAS  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DA (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    PubMed  CAS  Google Scholar 

  • Scolnik PA, Walker MA, Marrs BL (1980) Biosynthesis of carotenoids derived from neurosporene in Rhodopseudomonas capsulata. J Biol Chem 255:2427–2432

    PubMed  CAS  Google Scholar 

  • Sidorova TN, Makhneva ZK, Puchkova NN, Gorlenko VM, Erokhin YE, Moskalenko AA (1998) Characteristics of the photosynthetic apparatus of the purple bacterium Thiocapsa sp. BM3 containing okenone as a major carotenoid. Microbiology 67:158–164

    CAS  Google Scholar 

  • Spudich JL (2006) The multitalented microbial sensory rhodopsins. Trends Microbiol 14:480–487

    PubMed  CAS  Google Scholar 

  • Spudich JL, Yang C-S, Jung K-H, Spudich EN (2000) Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16:365–392

    PubMed  CAS  Google Scholar 

  • Steiger S, Sandmann G (2004) Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin. Biotechnol Lett 26:813–817

    PubMed  CAS  Google Scholar 

  • Steiger S, Astier A, Sandmann G (2000) Substrate specificity of the expressed carotenoid 3, 4 desaturase from Rubrivivax gelatinosus reveals the detailed reaction sequence to spheroidene and spirilloxanthin. Biochem J 349:635–640

    PubMed  CAS  Google Scholar 

  • Steiger S, Takaichi S, Sandmann G (2002) Heterologous production of two unusual acyclic carotenoids, 1, 1′-dihydroxy-3, 4-didehydrolycopene and 1-hydroxy-3, 4, 3′, 4′-tetradehydrolycopene by combination of the crtC and crtD genes from Rhodobacter and Rubrivivax. J Biotechnol 97:51–58

    PubMed  CAS  Google Scholar 

  • Steiger S, Jackisch Y, Sandmann G (2005) Carotenoid biosynthesis in Gloeobacter violaceus PCC4721 [sic] involves a single crtI-type phytoene desaturase instead of typical cyanobacterial enzyme. Arch Microbiol 184:207–214

    PubMed  CAS  Google Scholar 

  • Stickforth P, Sandmann G (2007) Kinetic variations determine the product pattern of phytoene desaturase from Rubrivivax gelatinosus. Arch Biochem Biophys 461:235–241

    PubMed  CAS  Google Scholar 

  • Stickforth P, Steiger S, Hess WR, Sandmann G (2003) A novel type of lycopene epsilon-cyclase in the marine cyanobacterium Prochlorococcus marinus MED4. Arch Microbiol 179:409–415

    PubMed  CAS  Google Scholar 

  • Sumii M, Furutani Y, Waschuk SA, Brown LS, Kandori H (2005) Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Biochemistry 44:15159–15166

    PubMed  CAS  Google Scholar 

  • Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, Cogdell R (eds) Advances in photosynthesis and respiration, vol 8, The photochemistry of carotenoids. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 39–69

    Google Scholar 

  • Takaichi S, Shimada K (1999) Pigment composition of two pigment-protein complexes derived from anaerobically and aerobically grown Rubrivivax gelatinosus and identification of a new ketocarotenoid, 2-ketospirilloxanthin. Plant Cell Phys 40:613–617

    CAS  Google Scholar 

  • Takaichi S, Shimada K, Ishidu J-I (1990) Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-carotene and its hydroxyl derivatives. Arch Microbiol 153:118–122

    CAS  Google Scholar 

  • Takaichi S, Inoue K, Akaike M, Kobayashi M, Oh-Oka H, Madigan MT (1997a) The major carotenoid in all known species of heliobacteria is the C30 carotenoid 4, 4′ diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281

    PubMed  CAS  Google Scholar 

  • Takaichi S, Wang Z-W, Umetsu M, Nozawa T, Shimada K, Madigan MT (1997b) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′, 2′-dihydro-γ-carotene, 1′, 2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains. Arch Microbiol 168:270–276

    PubMed  CAS  Google Scholar 

  • Takaichi S, Maoka T, Yamada M, Matsuura K, Haikawa Y, Hanada S (2001) Absence of carotenes and presence of a tertiary methoxy group in a carotenoid from a thermophilic filamentous photosynthetic bacterium Roseiflexus castenholzii. Plant Cell Physiol 42:1355–1362

    PubMed  CAS  Google Scholar 

  • Takaichi S, Mochimaru M, Maoka T, Katoh H (2005) Myxol and 4-ketomyxol 2′-fucosides, not rhamnosides, from Anabaena sp. PCC 7120 and Nostoc punctiforme sp. PCC 73102, and proposal for the biosynthetic pathway of carotenoids. Plant Cell Physiol 46:497–504

    PubMed  CAS  Google Scholar 

  • Takaichi S, Mochimaru M, Maoka T (2006) Presence of free myxol and 4-hydroxymyxol and absence of myxol glycosides in Anabaena variabilis ATCC 29413, and proposal of a biosynthetic pathway of carotenoids. Plant Cell Physiol 47:211–216

    PubMed  CAS  Google Scholar 

  • Tao L, Cheng Q (2004) Novel β-carotene ketolases from non-photosynthetic bacteria for canthaxanthin biosynthesis. Mol Gen Genomics 272:530–537

    CAS  Google Scholar 

  • Tao L, Picataggio S, Rouviere PE, Cheng Q (2004) Asymmetrically acting lycopene beta-cyclases (CrtLm) from non-photosynthetic bacteria. Mol Genet Genomics 271:180–188

    PubMed  CAS  Google Scholar 

  • Tao L, Schenzle A, Odom JM, Cheng Q (2005) Novel carotenoid oxidase involved in biosynthesis of 4, 4′-diapolycopene dialdehyde. Appl Environ Microbiol 71:3294–3301

    PubMed  CAS  Google Scholar 

  • Tao L, Rouviere PE, Cheng Q (2006) A carotenoid synthesis gene cluster from a non-marine Brevundimonas that synthesizes hydroxylated astaxanthin. Gene 379:101–108

    PubMed  CAS  Google Scholar 

  • Teramoto M, Takaichi S, Inomata Y, Ikenaga H, Misawa N (2003) Structural and functional analysis of a lycopene beta-monocyclase gene isolated from a unique marine bacterium that produces myxol. FEBS Lett 545:120–126

    PubMed  CAS  Google Scholar 

  • Thornburg LD, Lai MT, Wishnok JS, Stubbe J (1993) A non-heme iron protein with heme tendencies: an investigation of the substrate specificity of thymine hydroxylase. Biochemistry 32:14023–14033

    PubMed  CAS  Google Scholar 

  • Tsuchiya T, Takaichi S, Misawa N, Maoka T, Miyashita H, Mimuro M (2005) The cyanobacterium Gloeobacter violaceus PCC 7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis. FEBS Lett 579:2125–2129

    PubMed  CAS  Google Scholar 

  • Varkonyi Z, Masamoto K, Debreczeny M, Zsiros O, Ughy B, Gombos Z, Domonkos I, Farkas T, Wada H, Szalontai B (2002) Low-temperature-induced accumulation of xanthophylls and its structural consequences in the photosynthetic membranes of the cyanobacterium Cylindrospermopsis raciborskii: an FTIR spectroscopic study. Proc Natl Acad Sci USA 99:2410–2415

    PubMed  CAS  Google Scholar 

  • Viveiros M, Krubasik P, Sandmann G, Houssaini-Iraqui M (2000) Structural and functional analysis of the gene cluster encoding carotenoid biosynthesis in Mycobacterium aurum A+. FEMS Microbiol Lett 187:95–101

    PubMed  CAS  Google Scholar 

  • Vogl K, Glaeser J, Pfannes KR, Wanner G, Overmann R (2006) Chlorobium chlorochromatii sp nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 185:363–372

    PubMed  CAS  Google Scholar 

  • Wehling A, Walla PJ (2005) Time-resolved two-photon spectroscopy of photosystem I determines hidden carotenoid dark-state dynamics. J Phys Chem B 109:24510–24516

    PubMed  CAS  Google Scholar 

  • Wenk SO, Schneider D, Boronowsky U, Jager C, Klughammer C, de Weerd FL, van Roon H, Vermaas WFJ, Dekker JP, Rogner M (2005) Functional implications of pigments bound to a cyanobacterial cytochrome b 6 f complex. FEBS J 272:582–592

    PubMed  CAS  Google Scholar 

  • Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo J-M, Poralla K, Gotz F (1994) Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4, 4′-diaponeurosporene of Staphylococcus aureus. J Bacteriol 176:7719–7726

    PubMed  CAS  Google Scholar 

  • Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95:14851–14856

    PubMed  CAS  Google Scholar 

  • Ye RW, Stead KJ, Yao H, He H (2006) Mutational and functional analysis of the β-carotene ketolase involved in the production of canthaxanthin and astaxanthin. Appl Environ Microbiol 72:5829–5837

    PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystral structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research from the laboratory of Donald A. Bryant was generously supported by the US Dept. of Energy (DE-FG02-94ER20137) and National Science Foundation (MCB-0523100 and MCB-0519743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Bryant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maresca, J.A., Graham, J.E. & Bryant, D.A. The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. Photosynth Res 97, 121–140 (2008). https://doi.org/10.1007/s11120-008-9312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9312-3

Key words

Navigation