Skip to main content
Log in

Phycobilisome-reaction centre interaction in cyanobacteria

  • Mini Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The phycobilisome is a remarkable light-harvesting antenna that combines high efficiency with functional flexibility and the ability to capture light across a broad spectral range. A combination of biochemical, structural and spectroscopic studies has given an excellent picture of the structure and function of isolated phycobilisomes. However, we still know remarkably little about the interaction of the phycobilisome with the thylakoid membrane and the reaction centres. This article will discuss the various current ideas about this question and explain the things we need to know more about. As a working model, I propose that the phycobilisome is attached to the membrane by multiple weak charge–charge interactions with lipid head-groups and/or proteins, and that the core-membrane linker polypeptide ApcE provides a flexible surface allowing interaction with multiple membrane components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EM:

Electron microscopy

FRAP:

Fluorescence recovery after photobleaching

P700 :

Photochemically active 700 nm-absorbing chlorophyll of Photosystem I

PS:

Photosystem

References

  • Ajlani G, Vernotte C (1998) Deletion of the PB-loop in the LCM subunit does not affect phycobilisome assembly or energy transfer functions in the cyanobacterium Synechocystis sp. PCC6714. Eur J Biochem 257:154–159

    Article  PubMed  CAS  Google Scholar 

  • Allen JF, Sanders CE, Holmes NG (1985) Correlation of membrane protein phosphorylation with excitation energy distribution in the cyanobacterium Synechococcus 6301. FEBS Lett 193:271–275

    Article  CAS  Google Scholar 

  • Ashby MK, Mullineaux CW (1999a) The role of ApcD and ApcF in energy transfer from phycobilisomes to PS I and PS II in a cyanobacterium. Photosynth Res 61:169–179

    Article  CAS  Google Scholar 

  • Ashby MK, Mullineaux CW (1999b) Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II. FEMS Microbiol Lett 181:253–260

    Article  PubMed  CAS  Google Scholar 

  • Aspinwall CL, Sarcina M, Mullineaux CW (2004) Phycobilisome mobility on the cyanobacterium Synechococcus sp. PCC7942 is influenced by the trimerisation of Photosystem I. Photosynth Res 79:179–187

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Morris EP, da Fonseca PCA (2003) Interaction of the allophycocyanin core complex with photosystem II. Photochem Photobiol Sci 2:536–541

    Article  PubMed  CAS  Google Scholar 

  • Bruce D, Biggins J (1985) Mechanism of the light-state transition in photosynthesis. V. 77 K linear dichroism of Anacystis nidulans in State 1 and State 2. Biochim Biophys Acta 810:295–301

    Article  CAS  Google Scholar 

  • Clement-Metral JD, Gantt E (1983) Isolation of oxygen-evolving phycobilisome-photosystem II particles from Porphyridium cruentum. FEBS Lett 156:185–188

    Article  CAS  Google Scholar 

  • Emlyn-Jones D, Ashby MK, Mullineaux CW (1999) A gene required for the regulation of photosynthetic light-harvesting in the cyanobacterium Synechocystis 6803. Mol Microbiol 33:1050–1058

    Article  PubMed  CAS  Google Scholar 

  • Fujimori T, Hihara Y, Sonoike K (2005) PsaK2 subunit in photosystem I is involved in state transition under high light condition in the cyanobacterium Synechocystis sp. PCC6803. J Biol Chem 280:22191–22197

    Article  PubMed  CAS  Google Scholar 

  • Giddings TH, Wasmann C, Staehelin LA (1983) Structure of the thylakoids and envelope membranes of the cyanelles of Cyanophora paradoxa. Plant Physiol 71:409–419

    Article  PubMed  CAS  Google Scholar 

  • Gindt YM, Zhou J, Bryant DA, Sauer K (1992) Core mutations of Synechococcus sp. PCC7002 phycobilisomes: a spectroscopic study. J Photochem Photobiol B: Biol 15:75–89

    Article  CAS  Google Scholar 

  • Glazer AN (1984) Phycobilisome – a macromolecular complex optimised for light energy transfer. Biochim Biophys Acta 768:29–51

    CAS  Google Scholar 

  • Glazer AN (1988) Phycobilisomes. In: Packer L, Glazer AN (eds) Methods in enzymology vol. 167 (Cyanobacteria). Academic Press, San Diego, pp 304–312

    Google Scholar 

  • Grossman AR (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    PubMed  CAS  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806

    Article  PubMed  CAS  Google Scholar 

  • Houmard J, Capuano V, Colombano MV Coursin T, Tandeau de Marsac N (1990) Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 87:2152–2956

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Angstrom resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Joshua S, Mullineaux CW (2004) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol 135:2112–2119

    Article  PubMed  CAS  Google Scholar 

  • Joshua S, Mullineaux CW (2005) The rpaC gene product regulates phycobilisome–photosystem II interaction in cyanobacteria. Biochim Biophys Acta 1709:58–68

    Article  PubMed  CAS  Google Scholar 

  • Joshua S, Bailey S, Mann NH, Mullineaux CW (2005) Involvement of phycobilisome diffusion in energy quenching in cyanobacteria. Plant Physiol 138:1577–1585

    Article  PubMed  CAS  Google Scholar 

  • Katoh T, Gantt E (1979) Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis. Biochim Biophys Acta 546:383–393

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D, Kessel M, Ohad I (1983) In vitro reassociation of phycobiliproteins and membranes to form functional membrane-bound phycobilisomes. Biochim Biophys Acta 724:416–426

    Article  CAS  Google Scholar 

  • Kondo K, Ochiai Y, Katayama M, Ikeuchi M (2007) The membrane-associated CpcG2 phycobilisome in Synechocystis: a new Photosystem I antenna. Plant Physiol 144:1200–1210

    Article  PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    Article  PubMed  CAS  Google Scholar 

  • McConnell MD, Koop R, Vasil’ev S, Bruce D (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Mörschel E, Mühletahler K (1983) On the linkage of exoplasmic freeze-fracture particles to phycobilisomes. Planta 158:451–457

    Article  Google Scholar 

  • Mullineaux CW (1992) Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium. Biochim Biophys Acta 1100:285–292

    CAS  Google Scholar 

  • Mullineaux CW (1994) Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterial mutant lacking photosystem II. Biochim Biophys Acta 1184:71–77

    Article  CAS  Google Scholar 

  • Mullineaux CW (1999) The thylakoid membranes of cyanobacteria: structure, dynamics and function. Aust J Plant Physiol 26:671–677

    Article  CAS  Google Scholar 

  • Mullineaux CW, Allen JF (1990) State 1–state 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between photosystems I and II. Photosynth Res 22:157–166

    Google Scholar 

  • Mullineaux CW, Holzwarth AR (1991) Kinetics of excitation energy transfer in the cyanobacterial phycobilisome–photosystem II complex. Biochim Biophys Acta 1098:68–78

    Article  CAS  Google Scholar 

  • Mullineaux CW, Holzwarth AR (1993) Effect of photosystem II reaction centre closure on fluorescence decay kinetics in a cyanobacterium. Biochim Biophys Acta 1183:345–351

    Article  CAS  Google Scholar 

  • Mullineaux CW, Emlyn-Jones D (2004) State transitions: an example of acclimation to low-light stress. J Exp Bot 56:389–393

    Article  PubMed  Google Scholar 

  • Mullineaux CW, Tobin MJ, Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390:421–424

    Article  CAS  Google Scholar 

  • O’Toole PJ, Wolfe C, Ladha S, Cherry RJ (1999) Rapid diffusion of spectrin bound to a lipid surface. Biochim Biophys Acta 1419:64–70

    Article  PubMed  CAS  Google Scholar 

  • Peterson RP, Dolan E, Calvert HE, Ke B (1981) Energy transfer from phycobiliproteins to Photosystem I in vegetative cells and heterocysts of Anabaena variabilis. Biochim Biophys Acta 634:237–248

    Article  PubMed  CAS  Google Scholar 

  • Rakhimberdieva MG, Bolychevtseva YV, Elanskaya IV, Karapetyan NV (2007) Protein–protein interactions in carotenoid triggered quenching of phycobilisome fluorescence in Synechocystis sp. PCC6803. FEBS Lett 581:2429–2433

    Article  PubMed  CAS  Google Scholar 

  • Redlinger T, Gantt E (1982) A Mr 95000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: possible function in linkage of phycobilisomes to thylakoids and energy transfer. Proc Natl Acad Sci USA 79:5542–5548

    Article  PubMed  CAS  Google Scholar 

  • Sarcina M, Tobin MJ, Mullineaux CW (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. J Biol Chem 276:46830–46834

    Article  PubMed  CAS  Google Scholar 

  • Sarcina M, Murata N, Tobin MJ, Mullineaux CW (2003) Lipid diffusion in the thylakoid membranes of the cyanobacterium Synechococcus sp.: effect of fatty acid desaturation. FEBS Lett 553:295–298

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis K, Papageorgiou G (2001) The osmolality of the cell suspension regulates phycobilisome-to-photosystem I excitation transfers in cyanobacteria. Biochim Biophys Acta 1506:172–181

    Article  PubMed  CAS  Google Scholar 

  • Su X, Goodman Fraenkel P, Bogorad L (1992) Excitation energy transfer from phycocyanin to chlorophyll in an apcA-defective mutant of Synechocystis sp. PCC6803. J Biol Chem 267:22944–22950

    PubMed  CAS  Google Scholar 

  • Takai N, Nakajima M, Oyama T, Kito R, Sugita C, Sugita M, Kondo T, Iwasaki H (2006) A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci USA 103:12109–12114

    Article  PubMed  CAS  Google Scholar 

  • Wilson A, Boulay C, Wilde A, Kerfeld CA, Kirilovsky D (2007) Light-induced energy dissipation in iron-starved cyanobacteria: roles of the OCP and IsiA proteins. Plant Cell 19:656–672

    Article  PubMed  CAS  Google Scholar 

  • van Thor JJ, Mullineaux CW, Matthijs HCP, Hellingwerf KJ (1998) Light-harvesting and state transitions in cyanobacteria. Bot Acta 111:430–443

    Google Scholar 

  • Veerman J, Bentley FK, Eaton-Rye JJ, Mullineaux CW, Vasil’ev S, Bruce D (2005) The PsbU subunit of Photosystem II stabilizes energy transfer and primary photochemistry in the phycobilisome–Photosystem II assembly of Synechocystis sp. PCC 6803. Biochemistry 44:16939–16948

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Su Z, Li H, Feng J, Xie J, Xia A, Gong Y, Zhao J (2007) Demonstration of phycobilisome mobility by time- and space-correlated fluorescence imaging of a cyanobacterial cell. Biochim Biophys Acta 1767:15–21

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wu Q, Mao H, Zhao N, Vermaas WFJ (1999) Effects of chlorophyll availability on phycobilisomes in Synechocystis sp. PCC6803. IUBMB Life 48:626–630

    Google Scholar 

  • Zhao J, Zhou J, Bryant DA (1992) Energy transfer processes in phycobilisomes as deduced from analyses of mutants of Synechococcus sp. PCC7002. In: Murata N (ed) Research in photosynthesis, vol 1. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 25–32

    Google Scholar 

Download references

Acknowledgements

Work on this problem in the author’s laboratory has been supported by BBSRC and the Wellcome Trust. The author acknowledges helpful interactions with John Allen, Mark Ashby, Caroline Aspinwall, Doug Bruce, Don Bryant, Daniel Emlyn-Jones, Masahiko Ikeuchi, Sarah Joshua, Kumiko Kondo, Mary Sarcina and Jindong Zhao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad W. Mullineaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullineaux, C.W. Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95, 175–182 (2008). https://doi.org/10.1007/s11120-007-9249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9249-y

Keywords

Navigation