Skip to main content

Advertisement

Log in

The influence of bridging ligand electronic structure on the photophysical properties of noble metal diimine and triimine light harvesting systems

  • Regular paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This manuscript discusses the photophysical behavior of transition metal complexes of Ru(II) and Os(II) employed in development of light harvesting arrays of chromophores. Particular emphasis is placed on the relationship between the photophysical behavior of complexes having metal-to-ligand charge transfer (MLCT) excited states and the electronic characteristics of bridging ligands used in preparing oligometallic complexes. Examples are presented that discuss intramolecular energy migration in complexes having two distinct MLCT chromophores with bridging ligands that only very weakly couple the two chromophores. In addition, systems having bridging ligands with localized triplet excited states lower in energy than the MLCT state of the metal center to which they are attached are discussed. These systems very often have excited states localized on the bridging ligand with excited state lifetimes on the order of tens of microseconds. Finally, systems having Fe(II) metal centers, with very low energy MLCT states, are discussed. In complexes also containing bridging ligands with low energy triplet states, energy partitioning between the Fe center MLCT state (or Fe localized ligand field states) and the ligand triplet state is observed; the two states relax to the ground state via parallel pathways, but the Fe(II) center does not serve as an absolute excitation energy sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baitalik S, Wang, X.-Y, Schmehl RH, (2004) A trimetallic mixed Ru(II)/Fe(II) terpyridyl complex with a long-lived excited state in solution at room temperatureJ Am Chem Soc 126:16304–16305

    Article  PubMed  CAS  Google Scholar 

  • Balazs GC, del Guerzo A, Schmehl RH, (2005) Photophysical behavior and intramolecular energy transfer in Os(II) diimine complexes covalently linked to anthracene Photochem Photobiol Sci 4(1):89–94

    Article  PubMed  CAS  Google Scholar 

  • Balzani V, Juris A, (2001) Photochemistry and photophysics of Ru(II)-polypyridine complexes in the Bologna group. From early studies to recent developments Coord Chem Rev 211: 97–115

    Article  CAS  Google Scholar 

  • Baranoff E, Collin J-P, Flamigni L, Sauvage J-P, (2004) From ruthenium(II) to iridium(III): 15 years of triads based on bis-terpyridine complexes Chem Soc Revs 33(3):147–155

    Article  CAS  Google Scholar 

  • Barigelletti F, Flamigni L, Balzani V, Collin JP, Sauvage JP, Sour A, Constable EC, Thompson AMW, (1994) Intramolecular energy transfer through phenyl bridges in rod-like dinuclear Ru(II)/Os(II) terpyridine-type complexes Coord Chem Rev 132: 209–214

    Article  CAS  Google Scholar 

  • Barigelletti F, Juris A, Balzani V, Belser P, Von Zelewsky A, (1987) Temperature dependence of the bis(2,2’-bipyridine)dicyanoruthenium(II) and bis(2,2’-bipyridine)(2,2’-isobiquinoline)ruthenium(II) luminescenceJ Phys Chem 91(5):1095–1098

    Article  CAS  Google Scholar 

  • Belser P, Dux R, Baak M, De Cola L, Balzani V, (1995) Electronic energy transfer in a supramolecular species containing the [Ru(bpy)3]2+, [Os(bpy)3]2+, and anthracene chromophoric units Angew Chem Int Ed Engl 34(5):595–598

    Article  CAS  Google Scholar 

  • Bergkamp MA, Guetlich P, Netzel TL, Sutin N, (1983) Lifetimes of the ligand-to-metal charge-transfer excited states of iron(III) and osmium(III) polypyridine complexes. Effects of isotopic substitution and temperature J Phys Chem 87(20):3877–3883

    Article  CAS  Google Scholar 

  • Bignozzi CA, Bortolini O, Chiorboli C, Indelli MT, Rampi MA, Scandola F, (1992) Intramolecular energy transfer in ruthenium(II)–chromium(III) chromophore–luminophore complexes. Ru(bpy)2[Cr(cyclam)(CN)2]24+Inorg Chem 31(2):172–177

    Article  CAS  Google Scholar 

  • Bignozzi CA, Indelli MT, Scandola F, (1989) Bis(2,2’-bipyridine)ruthenium(II)–hexacyanochromate(III) chromophore–luminophore complexes. Intramolecular energy transfer, excited-state intervalence transfer, and doublet-doublet annihilationJ Am Chem Soc 111(14):5192–5198

    Article  CAS  Google Scholar 

  • Bignozzi CA, Schoonover JR, Scandola F, (1997) A supramolecular approach to light harvesting and sensitization of wide-bandgap semiconductors: antenna effects and charge separationProg Inorg Chem 44:1–95

    Article  CAS  Google Scholar 

  • Bilakhiya AK, Tyagi B., Paul P, Natarajan P, (2002) Di- and tetranuclear ruthenium(II) and/or osmium(II) complexes of polypyridyl ligands bridged by a fully conjugated aromatic spacer: synthesis, characterization, and electrochemical and photophysical studies Inorg Chem 41(15):3830–3842

    Article  PubMed  CAS  Google Scholar 

  • Bilakhiya Anvarhusen K, Tyagi B, Paul P, Natarajan P, (2002) Di- and tetranuclear ruthenium(II) and/or osmium(II) complexes of polypyridyl ligands bridged by a fully conjugated aromatic spacer: synthesis, characterization, and electrochemical and photophysical studies Inorg Chem 41(15):3830–3842

    Article  PubMed  CAS  Google Scholar 

  • Castagnola NB, Dutta PK, (1999) Artificial photosynthesis using zeolitesJ Photosci 6(3):91–96

    CAS  Google Scholar 

  • Chambron JC, Chardon-Noblat S, Harriman A, Heitz V, Sauvage JP, (1993) Photoinduced electron transfer in multiporphyrin clusters and rotaxanesPure Appl Chem 65(11):2343–2392

    CAS  Google Scholar 

  • Chang CJ, Yeh C-Y, Nocera DG, (2002) Porphyrin Architectures bearing functionalized xanthene spacers J Org Chem 67(4):1403–1406

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Mitsuishi M, Aoki A, Miyashita T, (2002) Photocurrent amplification by an energy/electron transfer cascade in polymer Langmuir-Blodgett films Chem Commun(23):2856–2856

    Article  Google Scholar 

  • Chiorboli C, Rodgers MAJ, Scandola F, (2003) Ultrafast processes in bimetallic dyads with extended aromatic bridges. Energy- and electron-transfer pathways in tetrapyridophenazine-bridged complexesJ Am Chem Soc 125(2):483–491

    Article  PubMed  CAS  Google Scholar 

  • Cleary RL, Byrom KJ, Bardwell DA, Jeffery JC, Ward MD, Calogero G, Armaroli N, Flamigni L, Barigelletti F, (1997) Intercomponent electronic energy transfer in heteropolynuclear complexes containing ruthenium- and rhenium-based chromophores bridged by an asymmetric quaterpyridine ligand Inorg Chem 36(12):2601–2609

    Article  CAS  Google Scholar 

  • Collin J-P, Harriman A, Heitz V, Odobel F, Sauvage J-P, (1996) Transition metal-assembled multiporphyrinic systems as models of photosynthetic reaction center Coord Chem Rev 148 63–69

    Article  CAS  Google Scholar 

  • Cox A, (1997) Photochemical aspects of solar energy conversion Photochemistry 28:455–462

    Article  CAS  Google Scholar 

  • Creutz C, Chou M, Netzel TL, Okumura M, Sutin N, (1980) Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II) J Am Chem Soc 102(4):1309–1319

    Article  CAS  Google Scholar 

  • Crosby GA, Elfring WH, (1976) Excited states of mixed ligand chelates of ruthenium(II) and rhodium(III)PJ Phys Chem 80(20): 2206–2211

    Article  CAS  Google Scholar 

  • Damrauer NH, McCusker JK, (1999) Ultrafast dynamics in the metal-to-ligand charge transfer excited-state evolution of [Ru(4,4’-diphenyl-2,2’-bipyridine)3]2+ J Phys Chem A 103(42):8440–8446

    Article  CAS  Google Scholar 

  • De Cola L, Barigelletti F, Balzani V, Belser P, Von Zelewsky A, Seel C, Frank M, Voegtle F, (1992) Ruthenium(II) and/or osmium(II) trimetallic complexes of tris(bipyridine) bridging ligands. Absorption spectra, luminescence properties, electrochemical behavior, and intercomponent energy transfer NATO ASI Ser., Ser C 371:157–180

    Google Scholar 

  • De Cola L, Barigelletti F, Balzani V, Hage R, Haasnoot JG, Reedijk J, Vos JG, (1991) Electronic energy transfer in bimetallic ruthenium–osmium complexes containing the 3,5−bis(pyridin-2-yl)-1,2,4-triazolate bridging ligand Chem Phys Lett 178(5–6):491–496

    Article  Google Scholar 

  • De Cola L, Belser P, (1998) Photoinduced energy- and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes Coord Chem Rev 177:301–346

    Article  Google Scholar 

  • Del Guerzo A, Balazs C, Fages F, and Schmehl RH (2000) Long-lived metallic charge transfer and organic intraligand triplet states in Ru(II)-pyrene and Os(II)-anthracene complexes, Abstracts of Papers – American Chemical Society 220th National Meeting

  • Del Guerzo A, Leroy S, Fages F, Schmehl RH, (2002) Photophysics of Re(I) and Ru(II) diimine complexes covalently linked to pyrene: contributions from intra-ligand charge transfer states Inorg Chem 41(2):359–366

    Article  PubMed  Google Scholar 

  • Demas JN (1983) Excited State Lifetime Measurements, Dekker, New York, 273 pp

  • Denti G, Campagna S, Sabatino L, Serroni S, Ciano M, and Balzani V. (1991) Towards an artificial photosynthesis di-, tri-, tetra-, and hepta-nuclear luminescent and redox-reactive metal complexes, Photochem Convers Storage Sol. Energy, Proc Int Conf 8th, pp. 27–45

  • Denti G, Serroni S, Campagna S, Juris A, Ciano M and Balzani V, (1992)“\”Complexes as metals\” and \”complexes as ligands\” synthetic strategies to design supramolecular compounds featuring made-to-order luminescent and redox properties. Perspect Coord Chem 153–164

  • El-ghayoury A, Harriman A, Khatyr A, Ziessel R, (2000) Intramolecular triplet energy transfer in metal polypyridine complexes bearing ethynylated aromatic groups J Phys Chem A 104(7):1512–1523

    Article  CAS  Google Scholar 

  • Endicott JF, Schlegel HB, Uddin MJ, Seniveratne DS, (2002a) MLCT excited states and charge delocalization in some ruthenium-ammine-polypyridyl complexes Coord Chem Revs 229(1–2):95–106

    Article  CAS  Google Scholar 

  • Endicott JF, Uddin MJ, Schlegel HB, (2002b) Some spectroscopic aspects of electron transfer in ruthenium(II) polypyridyl complexes Res Chem Intermed 28(7–9):761–777

    Article  CAS  Google Scholar 

  • Fan J, Shi W, Tysoe S, Strekas TC, Gafney HD, (1989) Temperature dependence of the photoinduced disproportionation of tris(bipyridine) ruthenium(2+) on porous Vycor glass J Phys Chem 93(1):373–376

    Article  CAS  Google Scholar 

  • Fujihira M (1993) Artificial photosynthesis by monolayer assemblies. Photochem Photoelectrochem Convers Storage Sol Energy, Proc 9th Int. Conf., pp. 193–216

  • Furue M, Yoshidzumi T, Kinoshita S, Kushida T, Nozakura S, Kamachi M. (1991) Intramolecular energy transfer in covalently linked poly pyridine ruthenium(II)/osmium(II) binuclear complexes. Ru(II)(bpy)2Mebpy-(CH2)n-MebpyOs(II)(bpy)2 (n=2, 3, 5, 7) Bull Chem Soc Jpn 64(5):1632–1640

    Article  CAS  Google Scholar 

  • Goze C, Kozlov DV, Tyson DS, Ziessel R, Castellano FN, (2003) Synthesis and photophysics of ruthenium(II) complexes with multiple pyrenylethynylene subunits New J Chem 27(12):1679–1683

    Article  CAS  Google Scholar 

  • Guerrero J., Piro OE, Wolcan E, Feliz MR, Ferraudi G, Moya SA, (2001) Photochemical and photophysical reactions of fac-rhenium(I) tricarbonyl complexes. effects from binucleating spectator ligands on excited and ground state processes Organometallics 20(13):2842–2853

    Article  CAS  Google Scholar 

  • Guldi DM, Maggini M, Menna E, Scorrano G, Ceroni P, Marcaccio M, Paolucci F, Roffia S, (2001) A photosensitizer dinuclear ruthenium complex: intramolecular energy transfer to a covalently linked fullerene acceptor Chem: Eur J 7(8):1597–1605

    Article  CAS  Google Scholar 

  • Gust D, Moore TA, Moore AL, (2001) Mimicking photosynthetic solar energy transductionAcc Chem Res 34(1):40–48

    Article  PubMed  CAS  Google Scholar 

  • Harriman A, Khatyr A, Ziessel R, Benniston AC, (2000) An unusually shallow distance-dependence for triplet-energy transferAngew Chem, Int Ed 39(23):4287–4290

    Article  CAS  Google Scholar 

  • Holten D, Bocian DF and Lindsey JS (2002) Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices. Acc Chem Res 35(1):

  • Hong B, Woodcock SR, Saito SK, Ortega JV, (1998) Luminescent and redox-active ruthenium(II) and osmium(II) complexes with a rigid allene-bridged polyphosphine J Chem Soc, Dalton Trans(16):2615–2624

    Article  Google Scholar 

  • Hungerford G, Van Der Auweraer M, Amabilino DB, (2001) Intramolecular fluorescence quenching in porphyrin-bearing (2)catenates J Porphyrins Phthalocyanines 5(8):633–644

    Article  CAS  Google Scholar 

  • Jandrasics EZ, Keene FR, (1997) Synthesis and properties of mononuclear tris(heteroleptic) osmium(II) complexes containing bidentate polypyridyl ligands J Chem Soc, Dalton Trans(2):153–159

    Article  Google Scholar 

  • Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A, (1988) Ruthenium(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence Coord Chem Rev8485–277

    Article  CAS  Google Scholar 

  • Kalyanasundaram K, (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogs Coord Chem Rev46159–244

    Article  CAS  Google Scholar 

  • Kim WY (1996) Synthesis and Photophysical Properties of Polyphenyl Bridged Multimetallic Transition Metal Complexes. Ph.D. Dissertation, Tulane University, New Orleans, LA,p. 225

  • Kim WYand Schmehl RH (1996) Photoinduced intramolecular energy transfer in rigidly bridged bimetallic RU(II) complexes. Book of Abstracts, 211th ACS National Meeting, New Orleans, LA, March 24–28

  • Kober EM, Caspar JV, Lumpkin RS, Meyer TJ, (1986) Application of the energy gap law to excited-state decay of osmium(II)–polypyridine complexes: calculation of relative nonradiative decay rates from emission spectral profilesJ Phys Chem 90(16):3722–3734

    Article  CAS  Google Scholar 

  • Kober EM, Sullivan BP, Meyer TJ, (1984) Solvent dependence of metal-to-ligand charge-transfer transitions. Evidence for initial electron localization in MLCT excited states of 2,2’-bipyridine complexes of ruthenium(II) and osmium(II) Inorg Chem 23(14):2098–2104

    Article  CAS  Google Scholar 

  • Kozlov DV, Tyson DS, Goze C., Ziessel R, Castellano FN, (2004) Room temperature phosphorescence from ruthenium(II) complexes bearing conjugated pyrenylethynylene subunitsInorg Chem 43(19):6083–6092

    Article  PubMed  CAS  Google Scholar 

  • Krausz E, Ferguson J, (1989) The spectroscopy of the tris(bipyridine)ruthenium(2+) system Prog Inorg Chem37293–390

    Article  CAS  Google Scholar 

  • Kumble R, Palese S, Lin VSY, Therien MJ, Hochstrasser RM, (1998) Ultrafast dynamics of highly conjugated porphyrin arrays J Am Chem Soc 120(44):11489–11498

    Article  CAS  Google Scholar 

  • Lammi RK, Wagner RW, Ambroise A, Diers JR, Bocian DF, Holten D, Lindsey JS, (2001) Mechanisms of excited-state energy-transfer gating in linear versus branched multiporphyrin arrays J Phys Chem B 105(22):5341–5352

    Article  CAS  Google Scholar 

  • Leveque J, Elias B, Moucheron C, Kirsch-De Mesmaeker A, (2005) Dendritic tetranuclear Ru(II) complexes based on the nonsymmetrical PHEHAT bridging ligand and their building blocks: synthesis, characterization, and electrochemical and photophysical propertiesInorg Chem 44(2): 393–400

    Article  PubMed  CAS  Google Scholar 

  • Liang YY, Baba AI, Kim WY, Atherton SJ, Schmehl RH, (1996a) Intramolecular exchange energy transfer in a bridged bimetallic transition metal complex: calculation of rate constants using emission spectral fitting parameters J Phys Chem 100(47):18408–18414

    Article  CAS  Google Scholar 

  • Liang YY, Baba AI, Kim WY, Atherton SJ, Schmehl RH, (1996b) Intramolecular exchange energy transfer in a bridged bimetallic transition metal complex: calculation of rate constants using emission spectral fitting parameters J Phys Chem 100(47):18408–18414

    Article  CAS  Google Scholar 

  • Lin VSY, DiMagno SG, Therien MJ, (1994) Highly conjugated, acetylenyl bridged porphyrins: new models for light-harvesting antenna systems Science 264(5162):1105–1111

    Article  PubMed  CAS  Google Scholar 

  • Lindsey JS, (1997) Modular design of multiporphyrin arrays for studies in photosynthesis and molecular photonicsNATOASI Ser, Ser. C 499(Modular Chemistry):517–528

    CAS  Google Scholar 

  • Logunov SL, Rodgers MAJ, (1992) Self-assembled ion-pair complexes between porphyrins and bipyridinium species: picosecond dynamics of charge recombination J Phys Chem 96(22):8697–8700

    Article  CAS  Google Scholar 

  • Markvart T, (2000) Light harvesting for quantum solar energy conversion Prog Quantum Electron 24(3–4):107–186

    Article  CAS  Google Scholar 

  • McClenaghan , ND, Loiseau F, Puntoriero F, Serroni S, Campagna S, (2001) Light-harvesting metal dendrimers appended with additional organic chromophores: a tetranuclear heterometallic first-generation dendrimer exhibiting unusual absorption features Chem Commun (24):2634–2635

    Article  Google Scholar 

  • McCusker JK, (2003) Femtosecond absorption spectroscopy of transition metal charge-transfer complexes Acc Chem Res 36(12):876–887

    Article  PubMed  CAS  Google Scholar 

  • McCusker JK, Walda KN, Dunn RC, Simon JD, Magde D, Hendrickson DN, (1993) Subpicosecond 1MLCT. Fwdarw. 5T2 intersystem crossing of low-spin polypyridyl ferrous complexes J Am Chem Soc 115(1):298–307

    Article  CAS  Google Scholar 

  • Meyer TJ, (1986) Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states Pure Appl Chem 58(9):1193–1206

    CAS  Google Scholar 

  • Meyer TJ, (1989) Chemical approaches to artificial photosynthesis Acc Chem Res 22(5):163–170

    Article  CAS  Google Scholar 

  • Murtaza Z, Graff DK, Zipp AP, Worl LA, Jones WE, Jr., Bates WD, Meyer TJ, (1994) Energy transfer in the inverted region: calculation of relative rate constants by emission spectral fitting J Phys Chem 98(41):10504–10513

    Article  CAS  Google Scholar 

  • Nagle JK, Roundhill DM, (1992) Excited state properties and photoinduced catalytic reactions of tris(2,2’-bipyridine)ruthenium(2+) and tetrakis(.mu.-diphosphito)diplatinate(4-): outer-sphere versus inner-sphere photochemistry Chemtracts: Inorg Chem 4(3):141–155

    CAS  Google Scholar 

  • Osawa M, Sonoki H, Hoshino M, Wakatsuki Y. (1998) Synthesis and luminescence properties of Ru2/Cu, Ru2/Ni, and Ru2/Os mixed metal polypyridine complexes bound by 1,3,5-triethynylenebenzeneChem Lett (11):1081–1082

    Article  Google Scholar 

  • Peeters E, Ramos AM, Meskers SCJ, Janssen RAJ, (2000) Singlet and triplet excitations of chiral dialkoxy-p-phenylene vinylene oligomers J Chem Phys 112(21):9445–9454

    Article  CAS  Google Scholar 

  • Pomestchenko IE, Castellano FN, (2004) Solvent switching between charge transfer and intraligand excited states in a multichromophoric platinum(II) complex J Phys Chem A 108(16):3485–3492

    Article  CAS  Google Scholar 

  • Qu P, Thompson DW, Meyer GJ, (2000) Temperature-dependent electron injection from Ru(II) polypyridyl compounds with low lying ligand field states to titanium dioxide Langmuir 16(10):4662–4671

    Article  CAS  Google Scholar 

  • Richter MM, Brewer KJ, (1991) Synthesis and characterization of osmium(II) complexes incorporating polypyridyl bridging ligands Inorg Chim Acta 180(1):125–131

    Article  CAS  Google Scholar 

  • Ryu CK, Schmehl RH, (1989) Solvent and temperature dependence of intramolecular energy transfer in the complex [(dmb)2Ru(b-b)Ru(dmb)(CN)2]2+ J Phys Chem 93(23):7961–7966

    Article  CAS  Google Scholar 

  • Sauvage JP, Collin JP, Chambron JC, Guillerez S, Coudret C, Balzani V, Barigelletti F, De Cola L, Flamigni L, (1994) Ruthenium(II) and osmium(II) bis(terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties Chem Rev 94(4):993–1019

    Article  CAS  Google Scholar 

  • Scandola F, Indelli MT, (1988) Second sphere donor acceptor interactions in excited states of coordination compounds. Ruthenium(II) bipyridine cyano complexes Pure Appl Chem 60(7):973–980

    CAS  Google Scholar 

  • Schanze KS, Neyhart GA, Meyer TJ, (1986) Excited-state energy and electron transfer in ligand-bridged dimeric complexes of osmium J Phys Chem 90(10):2182–2193

    Article  CAS  Google Scholar 

  • Schmehl R. (2000) Something new in transition metal complex sensitizers: bringing metal diimine complexes and aromatic hydrocarbons togetherSpectrum (Bowling Green, OH, U. S.) 13(2):17–21

    CAS  Google Scholar 

  • Schmehl RH, Auerbach RA, Wacholtz WF, Elliott CM, Freitag RA, Merkert JW, 1986) Formation and photophysical properties of iron–ruthenium tetranuclear bipyridyl complexes of the type {[(bpy)2Ru(L-L)]3Fe} Inorg Chem 25(14):2440–2445

    Article  CAS  Google Scholar 

  • Shaw JR, Schmehl RH, (1991) Photophysical properties of rhenium(I) diimine complexes: observation of room-temperature intraligand phosphorescence J Am Chem Soc 113(2):389–394

    Article  CAS  Google Scholar 

  • Shaw JR, Webb RT, Schmehl RH, (1990) Intersystem crossing to both ligand-localized and charge-transfer excited states in mononuclear and dinuclear ruthenium(II) diimine complexesJ Am Chem Soc 112(3):1117–1123

    Article  CAS  Google Scholar 

  • Simon JA, Curry SL, Schmehl RH, Schatz TR, Piotrowiak P, Jin X, Thummel RP, (1997) Intramolecular electronic energy transfer in ruthenium(II) diimine donor/pyrene acceptor complexes linked by a single C–C bond J Am Chem Soc 119(45):11012–11022

    Article  CAS  Google Scholar 

  • Smilowitz L, Heeger AJ, (1992) Photoinduced absorption from triplet excitations in poly(2-methoxy, 5-(2’-ethyl-hexyloxy)-p-phenylene vinylene) oriented by gel-processing in polyethylene Synth Met 48(2):193–202

    Article  CAS  Google Scholar 

  • Thompson DW, Wishart JF, Brunschwig BS, Sutin N. (2001) Efficient generation of the ligand field excited state of tris-(2,2’-bipyridine)-ruthenium(II) through sequential two-photon capture by [Ru(bpy)3]2+ or electron capture by [Ru(bpy)3]3+ J Phys Chem A 105(35):8117–8122

    Article  CAS  Google Scholar 

  • Tomizaki K-Y, Loewe RS, Kirmaier C, Schwartz JK, Retsek JL, Bocian DF, Holten D, Lindsey JS, (2002) Synthesis and photophysical properties of light-harvesting arrays comprised of a porphyrin bearing multiple perylene-monoimide accessory pigments J Org Chem 67(18):6519–6534

    Article  PubMed  CAS  Google Scholar 

  • Turro NJ (1978) Modern Molecular Photochemistry pp 628 Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  • Tyson DS, Castellano FN, (1999) Light-harvesting arrays with coumarin donors and MLCT acceptors Inorg Chem 38(20):4382–4383

    Article  PubMed  CAS  Google Scholar 

  • Van Diemen JH, Hage R, Haasnoot JG, Lempers HEB, Reedijk J, Vos JG, De Cola L, Barigelletti F, Balzani V. (1992) Electrochemical and photophysical properties of new triazole-bridged heterobimetallic ruthenium–rhodium and ruthenium–iridium complexesInorg Chem 31(17):3518–3522

    Article  Google Scholar 

  • Van Houten J, Watts RJ, (1976) Temperature dependence of the photophysical and photochemical properties of the tris(2,2’-bipyridyl)ruthenium(II) ion in aqueous solution J Am Chem Soc 98(16):4853–4858

    Article  Google Scholar 

  • Van Houten J, Watts RJ, (1978) Photochemistry of tris(2,2’-bipyridyl)ruthenium(II) in aqueous solutionsInorg Chem 17(12):3381–3385

    Article  Google Scholar 

  • Van Wallendael S, Rillema DP, (1991) Photoinduced intramolecular energy transfer from one metal center to the other in a mixed-metal ruthenium/rhenium complexCoord Chem Revs 111: 297–318

    Article  Google Scholar 

  • Vlcek A, Jr. (1998) Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+Chemtracts 11(8):621–625

    CAS  Google Scholar 

  • Voegtle F, Frank M, Nieger M, Belser P, von Zelewsky A, Balzani V, Barigelletti F, De Cola L, Flamigni L. (1993) Rigid, rod-like metal complexes with nanometer dimensions: synthesis, luminescence, and long-range energy transferAngew Chem 105(11):1706–1706 (See also Angew Chem, Int Ed Engl, 1993, 32(11), 1643–1646)

    Article  CAS  Google Scholar 

  • Vogler LM, Jones SW, Jensen GE, Brewer RG, Brewer KJ, (1996) Comparing the spectroscopic and electrochemical properties of ruthenium and osmium complexes of the tridentate polyazine ligands 2,2’:6’,2’’-terpyridine and 2,3,5,6-tetrakis(2-pyridyl)pyrazine Inorg Chim Acta 250(1–2):155–162

    Article  CAS  Google Scholar 

  • Wacholtz WF, Auerbach RA, Schmehl RH, (1987) Preparation, characterization, and photophysical properties of covalently linked binuclear and tetranuclear ruthenium bipyridyl complexes Inorg Chem 26(18):2989–2994

    Article  CAS  Google Scholar 

  • Wacholtz WM, Auerbach RA, Schmehl RH, Ollino M, Cherry WR, (1985) Correlation of ligand field excited-state energies with ligand field strength in (polypyridine)ruthenium(II) complexes Inorg Chem 24(12):1758–1760

    Article  CAS  Google Scholar 

  • Wang B, Wasielewski MR, (1997) Design and synthesis of metal ion-recognition-induced conjugated polymers: an approach to metal ion sensory materials J Am Chem Soc 119(1):12–21

    Article  CAS  Google Scholar 

  • Wang XY (2004) Oligo(phenylene-vinylene) terpyridine Ligands and Their Ru(II), Pt(II), and Zn(II) Complex Systems. Dissertation, pp. 183, Tulane University, New Orleans, LA

  • Wang XY, DelGuerzo A, Schmehl RH, (2004a) Photophysical behavior of transition metal complexes having interacting ligand localized and metal-to-ligand charge transfer states J Photochem Photobiol C 5(1):55–77

    Article  Google Scholar 

  • WangX-Y, del Guerzo A, Tunuguntla H and Schmehl RH (2004b) Photophysical behavior of Ru(II) and Os(II) terpyridyl phenylene vinylene complexes: perturbation of MLCT state by intraligand charge transfer state. Res. Chem. Intermed. in press

  • Whittle CE, Weinstein JA, George MW, Schanze KS, (2001) Photophysics of diimine platinum(II) bis-acetylide complexes Inorg Chem 40(16):4053–4062

    Article  PubMed  CAS  Google Scholar 

  • Winkler JR, Sutin N. (1987) Lifetimes and spectra of the excited states of cis-dicyanobis(2,2’-bipyridine)iron(II) and -ruthenium(II) in solution Inorg Chem 26(2):220–221

    Article  CAS  Google Scholar 

  • Xu D, Zhang JZ, Hong B. (2001) Investigation of electron delocalization and ultrafast studies of RuII/OsII dyads with ethynyl/butadiynyl-bridged polyphosphines J Phys Chem A 105(34):7979–7988

    Article  CAS  Google Scholar 

  • Yeh AT, Shank CV, McCusker JK, (2000) Ultrafast electron localization dynamics following photo-induced charge transfer Science 289(5481):935–938

    Article  PubMed  CAS  Google Scholar 

  • Yeh AT, Shank CV, McCusker JK, (2001) Ultrafast solvent-induced charge localization in tris-(2,2’-bipyridine) ruthenium(II) Springer Ser Chem Phys 66:494–496

    CAS  Google Scholar 

  • Yersin H, Kratzer C. (2002) Energy transfer and harvesting in [Ru1-xOsx(bpy)3](PF6)2 and {L-[Ru(bpy)3]D-[Os(bpy)3]}(PF6)4 Coord Chem Revs 229(1–2):75–93

    Article  CAS  Google Scholar 

  • Yu L, Muthukumaran K, Boyle PD, Lindsey JS, Sazanovich IV, Kirmaier C, Hindin E, Holten D, Diers JR, Bocian DF, (2003) Excited-state energy-transfer dynamics in self-assembled triads composed of two porphyrins and an intervening bis(dipyrrinato)metal complexInorg Chem 42(21):6629–6647

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the U.S. Department of Energy, Division of Science (#DE-FG02–96 ER14617) for support of this work. In addition, RHS wishes to thank the many graduate and undergraduate students that contributed a great deal to this work; some of their efforts are recognized in the citations in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Schmehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Xy., Del Guerzo, A., Baitalik, S. et al. The influence of bridging ligand electronic structure on the photophysical properties of noble metal diimine and triimine light harvesting systems. Photosynth Res 87, 83–103 (2006). https://doi.org/10.1007/s11120-005-9007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-005-9007-y

Keywords

Navigation