Skip to main content
Log in

Near infrared spectroscopy as a tool for intensive mapping of vineyards soil

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The wine industry has always been particularly interested in the influence of the terroir characteristics on the features of a wine. Over the past few years, a growing interest has spurred on the mechanisms by which a particular soil influences the vine’s growth, grape variety characteristics and ultimately wine quality. Near-infrared spectroscopy (NIRS) is a rapid, non-destructive, low-cost and robust analytical method for chemical and physical property determination. Its use for soil characterization, discrimination and compound determination is rapidly increasing. In this work, NIRS data were collected in two vineyards, one in the Dão Wine Region (centre of Portugal) and one in the Vinhos Verdes Wine Region (North of Portugal) previously characterized in terms of soils. Wet, dried and dried-ground soil samples collected from specific vineyard locations were scanned on a Fourier-transform near infrared spectrometer (FTLA 2000, ABB, Quebec, Canada) in diffuse reflectance mode. Spectra were analysed with chemometric tools, namely principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Results revealed that dried, ground soil samples gave better results, but not substantially so when compared with wet or dried samples. Discriminant models showed that the NIRS method is able to discriminate the different vineyard soil types, reproducing very accurately the mapping generated by pedology methods. Variations within the same soil type (present at different locations in the vineyard) were also detected by NIRS. The NIRS technology was shown to be suitable for correlating, complementing and perhaps eventually replacing costly, time-consuming vineyard soil mapping methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbeau, G., Morlat, R., Asselin, C., Jacquet, A., & Pinard, C. (1998). Comportement du cépage Cabernet Franc dans différentes terroirs du Val de Loire. Incidence de la précocité sur la composition de la vendange en année climatique normale (exemple de 1988) (Behaviour of the Cabernet Franc grapevine variety in various « terroirs » of the Loire valley. Influence of the precocity on the harvested grapes composition for a normal climatic year (example of the year 1988)). Journal International des Sciences de la Vigne et du Vin, 32(2), 69–81.

    Google Scholar 

  • Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166–173.

    Article  CAS  Google Scholar 

  • Barthes, B. G., Brunet, D., Ferrer, H., Chotte, J. L., & Feller, C. (2006). Determination of total carbon and nitrogen content in a range of tropical soils using near infrared spectroscopy: influence of replication and sample grinding and drying. Journal of Near Infrared Spectroscopy, 14(5), 341–348.

    Article  CAS  Google Scholar 

  • Baumgardner, M. F., Silva, L. F., Biehl, L. L., & Stoner, E. R. (1985). Reflectance properties of soils. Advances in Agronmy, 38, 1–44.

    CAS  Google Scholar 

  • Bishop, J. L., Lane, M. D., Dyar, M. D., & Brown, A. J. (2008). Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43(1), 35–54.

    Article  CAS  Google Scholar 

  • Bodin, F., & Morlat, R. (2006). Characterization of viticultural terroirs using a simple field model based on soil depth I. Validation of the water supply regime, phenology and vine vigour, in the Anjou vineyard (France). Plant and Soil, 281(1–2), 37–54.

    Article  CAS  Google Scholar 

  • Borrelli, P., Panagos, P., Langhammer, J., Apostol, B., & Schutt, B. (2016). Assessment of the cover changes and the soil loss potential in European forestland: first approach to derive indicators to capture the ecological impacts on soil-related forest ecosystems. Ecological Indicators, 60, 1208–1220.

    Article  Google Scholar 

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1), 3–22.

    Article  CAS  Google Scholar 

  • Carey, V. (2001). Spatial characterization of natural terroir units for viticulture in the Bottelaryberg-Simonsberg-Helderberg winegrowing area. Matieland (Stellenbosch), South Africa: Stellenbosch University.

    Google Scholar 

  • Catarino, S., Trancoso, I. M., Madeira, M., Monteiro, F., Bruno de Sousa, R., & Curvelo-Garcia, A. S. (2011). Rare earths data for geographical origin assignment of wine: a portuguese case study. Bulletin de l’OIV, 84, 333–346.

    CAS  Google Scholar 

  • Costantini, E. A. C., Campostrini, F., Arcara, P. G., Cherubini, P., Storchi, P., & Pierucci, M. (1996). Soil and climate functional characters for grape ripening and wine quality of “Vino Nobile di Montepulciano”. Acta Horticulturae, 427, 45–56.

    Article  Google Scholar 

  • Cozzolino, D., Cynkar, W. U., Dambergs, R. G., Shah, N., & Smith, P. (2013). In situ measurement of soil chemical composition by near-infrared spectroscopy: a tool toward sustainable vineyard management. Communications in Soil Science and Plant Analysis, 44(10), 1610–1619.

    Article  CAS  Google Scholar 

  • Cozzolino, D., & Moron, A. (2006). Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions. Soil & Tillage Research, 85(1–2), 78–85.

    Article  Google Scholar 

  • Dalal, R. C., & Henry, R. J. (1986). Simultaneous determination of moisture, organic-carbon, and total nitrogen by near-infrared reflectance spectrophotometry. Soil Science Society of America Journal, 50(1), 120–123.

    Article  CAS  Google Scholar 

  • Deaville, E. R., & Flinn, P. C. (2000). Near infrared (NIR) spectroscopy: an alternative approach for the estimation of forage quality and voluntary intake. In D. I. Givens, E. Owen, H. M. Omed, & R. F. E. Axford (Eds.), Forage evaluation in ruminant nutrition (pp. 301–320). Wallingford, UK: CABI Publishing.

    Chapter  Google Scholar 

  • Dunn, B. W., Beecher, H. G., Batten, G. D., & Ciavarella, S. (2002). The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine plain of south-eastern Australia. Australian Journal of Experimental Agriculture, 42(5), 607–614.

    Article  Google Scholar 

  • Eschnauer, H., Jakob, L., Meierer, H., & Neeb, R. (1989). Use and limitations of ICP-OES in wine analysis. Mikrochimica Acta, 3(3–6), 291–298.

    Article  CAS  Google Scholar 

  • FAO-WRBSR. (2014). International union of soil science (IUSS) working group world reference base. World reference base for soil resources. In International soil classification system for naming soils and creating legends for soil maps. Rome, Italy: FAO.

  • Fystro, G. (2002). The prediction of C and N content and their potential mineralisation in heterogeneous soil samples using Vis-NIR spectroscopy and comparative methods. Plant and Soil, 246(2), 139–149.

    Article  CAS  Google Scholar 

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression—a tutorial. Analytica Chimica Acta, 185, 1–17.

    Article  CAS  Google Scholar 

  • Greenough, J. D., Longerich, H. P., & Jackson, S. E. (1997). Element fingerprinting of Okanagan valley wines using ICP-MS: Relationships between wine composition, vineyard and wine colour. Australian Journal of Grape and Wine Research, 3(2), 75–83.

    Article  CAS  Google Scholar 

  • Grootveld, M. (2012). Introduction to the applications of chemometric techniques in ‘omics’ research: common pitfalls, misconceptions and ‘rights and wrongs’. In M. Grootveld (Ed.), Metabolic profiling: Disease and xenobiotics (pp. 1–34). London, UK: Royal Society of Chemistry.

    Google Scholar 

  • Magalhães, L. M., Machado, S., Segundo, M. A., Lopes, J. A., & Páscoa, R. N. (2016). Rapid assessment of bioactive phenolics and methylxanthines in spent coffee grounds by FT-NIR spectroscopy. Talanta, 147, 460–467.

    Article  PubMed  Google Scholar 

  • Murray, I. (1993). Forage analysis by near infrared spectroscopy. In A. Davies, R. D. Baker, S. A. Grant, & A. S. Laidlaw (Eds.), Sward management handbook (pp. 285–312). Kenilworth, UK: British Grassland Society.

    Google Scholar 

  • Naes, T., Isaksson, T., Fearn, T., & Davies, T. (2004). Interpreting PCR and PLS solutions. A user-friendly guide to multivariate calibration and classification (pp. 39–54). Chichester, UK: NIR Publications.

    Google Scholar 

  • Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Near infrared spectroscopy in food analysis. Essex, UK: Longman Scientific and Technical.

    Google Scholar 

  • Pessanha, M., & Graça, A. (2011). Increasing efficiency in production management of a wine enterprise: the project I.C.O.N.E. In Proceedings of the 34th World Congress of Vine and Wine. OIV (Organisation Internationale de la Vigne et du Vin), p. 20–27. Paris, France.

  • Preisner, O., Guiomar, R., Machado, J., Menezes, J. C., & Lopes, J. A. (2010). Application of Fourier transform infrared spectroscopy and chemometrics for differentiation of Salmonella enterica Serovar Enteritidis phage types. Applied and Environmental Microbiology, 76(11), 3538–3544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves, J. B., McCarty, G. W., & Meisinger, J. J. (1999). Near infrared reflectance spectroscopy for the analysis of agricultural soils. Journal of Near Infrared Spectroscopy, 7(3), 179–193.

    Article  CAS  Google Scholar 

  • Russell, C. A. (2003). Sample preparation and prediction of soil organic matter properties by near infra-red reflectance spectroscopy. Communications in Soil Science and Plant Analysis, 34(11–12), 1557–1572.

    Article  CAS  Google Scholar 

  • Sarathjith, M. C., Das, B. S., Vasava, H. B., Mohanty, B., Sahadevan, A. S., Wani, S. P., et al. (2014). Diffuse reflectance spectroscopic approach for the characterization of soil aggregate size distribution. Soil Science Society of America Journal, 78(2), 369–376.

    Article  Google Scholar 

  • Stevens, A., van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B., & Ben-Dor, E. (2008). Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma, 144(1–2), 395–404.

    Article  CAS  Google Scholar 

  • Stevens, A., Van Wesemael, B., Vandenschrick, G., Toure, S., & Tychon, B. (2006). Detection of carbon stock change in agricultural soils using spectroscopic techniques. Soil Science Society of America Journal, 70(3), 844–850.

    Article  CAS  Google Scholar 

  • Tesic, D., Woolley, D. J., Hewett, E. W., & Martin, D. J. (2002). Environmental effects on cv Cabernet Sauvignon (Vitis vinifera L.) grown in Hawke’s bay, New Zealand. 1. Phenology and characterisation of viticultural environments. Australian Journal of Grape and Wine Research, 8(1), 15–26.

    Article  Google Scholar 

  • Theo, J. (2005). Short introduction to infrared and Raman spectroscopy. In J. Theo (Ed.), The application of vibrational spectroscopy to clay minerals and layered double hydroxides (pp. 1–8). Chantilly, France: Clay Minerals Society.

    Google Scholar 

  • Tian, J., & Philpot, W. D. (2015). Relationship between surface soil water content, evaporation rate, and water absorption band depths in SWIR reflectance spectra. Remote Sensing of Environment, 169, 280–289.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., & Behrens, T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1–2), 46–54.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., Cattle, S. R., Ortega, A., & Fouad, Y. (2009). In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma, 150(3–4), 253–266.

    Article  CAS  Google Scholar 

  • Viscarra Rossel, R. A., & Chen, C. (2011). Digitally mapping the information content of visible-near infrared spectra of surficial Australian soils. Remote Sensing of Environment, 115(6), 1443–1455.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., & McBratney, A. B. (1998). Laboratory evaluation of a proximal sensing technique for simultaneous measurement of soil clay and water content. Geoderma, 85(1), 19–39.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59–75.

    Article  CAS  Google Scholar 

  • Waiser, T. H., Morgan, C. L. S., Brown, D. J., & Hallmark, C. T. (2007). In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Science Society of America Journal, 71(2), 389–396.

    Article  CAS  Google Scholar 

  • Wetterlind, J., Stenberg, B., & Viscarra Rossel, R. A. (2013). Soil analysis using visible and near infrared spectroscopy. In F. J. M. Maathuis (Ed.), Plant mineral nutrients: Methods and protocols (pp. 95–107). New York, USA: Humana Press, Springer.

    Chapter  Google Scholar 

  • Wu, C. Y., Jacobson, A. R., Laba, M., & Baveye, P. C. (2009). Accounting for surface roughness effects in the near-infrared reflectance sensing of soils. Geoderma, 152(1), 171–180.

    CAS  Google Scholar 

  • Zimmermann, M., Leifeld, J., & Fuhrer, J. (2007). Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biology & Biochemistry, 39(1), 224–231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SOGRAPE Vinhos S.A. is greatly acknowledged for the financial support through the Project PP-IJUP2011-SOGRAPE-347. M. Lopo, C. Santos and R. Páscoa acknowledge FCT-MEC (Fundação para a Ciência e Tecnologia) for the Grants SFRH/BD/91521/2012, SFRH/BD/91419/2012 and SFRH/BPD/81384/2011 respectively. J. Lopes thanks FSE (Fundo Social Europeu) and MEC (Ministério da Educação e Ciência) for the financial support through the POPH-QREN program. Authors also acknowledge FCT-MEC for the financial support through the strategic Project PEst-C/EQB/LA0006/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João A. Lopes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopo, M., Teixeira dos Santos, C.A., Páscoa, R.N.M.J. et al. Near infrared spectroscopy as a tool for intensive mapping of vineyards soil. Precision Agric 19, 445–462 (2018). https://doi.org/10.1007/s11119-017-9529-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-017-9529-2

Keywords

Navigation