Skip to main content
Log in

Maximizing the relationship of yield to site-specific management zones with object-oriented segmentation of hyperspectral images

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Quick and low cost delineation of site-specific management zones (SSMZ) would improve applications of precision agriculture. In this study, a new method for delineating SSMZ using object-oriented segmentation of airborne imagery was demonstrated. Three remote sensing domains—spectral, spatial, and temporal- are exploited to improve the SSMZ relationship to yield. Common vegetation indices (VI), and first and second derivatives (\(\rho^{\prime}\), \(\rho^{\prime\prime}\)) from twelve airborne hyperspectral images of a cotton field for one season \(\rho^{\prime}\) were used as input layers for object-oriented segmentation. The optimal combination of VI, SSMZ size and crop phenological stage were used as input variables for SSMZ delineation, determined by maximizing the correlation to segmented yield monitor maps. Combining narrow band vegetation indices and object-oriented segmentation provided higher correlation between VI and yield at SSMZ scale than that at pixel scale by reducing multi-resource data noise. VI performance varied during the cotton growing season, providing better SSMZ delineation at the beginning and middle of the season (days after planting (DAP) 66–143).The optimal scale determined for SSMZ delineation was approximately 240 polygons for the study field, but the method also provided flexibility enabling the setting of practical scales for a given field. For a defined scale, the optimal single phenological stage for the study field was near July 11 (DAP 87) early in the growing season. SSMZs determined from multispectral VIs at a single stage were also satisfactory; compared to hyperspectral indices, temporal resolution of multi-spectral data seems more important for SSMZ delineation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baatz, M., Benz, U., Dehghani, S., Heynen, M., Höltje, A., Hofmann, P., et al. (2004). eCognition professional user guide 4. Munich, Germany: Definiens Imaging.

    Google Scholar 

  • Ben-Dor, E., Chabrillat, S., Demattê, J. A. M., Taylor, G. R., Hill, J., Whiting, M. L., et al. (2009). Using imaging spectroscopy to study soil properties. Remote Sensing of Environment, 113(Supplement 1(0)), S38–S55. doi:10.1016/j.rse.2008.09.019.

    Article  Google Scholar 

  • Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258. doi:10.1016/j.isprsjprs.2003.10.002.

    Article  Google Scholar 

  • Blaschke, T., & Strobl, J. (2001). What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. GeoBIT/GIS, 6(1), 12–17.

    Google Scholar 

  • Boydell, B., & McBratney, A. B. (2002). Identifying potential within-field management zones from cotton-yield estimates. Precision Agriculture, 3(1), 9–23. doi:10.1023/a:1013318002609.

    Article  Google Scholar 

  • Chen, Z., Zhao, Z., Gong, P., & Zeng, B. (2006). A new process for the segmentation of high resolution remote sensing imagery. International Journal of Remote Sensing, 27(22), 4991–5001.

    Article  Google Scholar 

  • Davatgar, N., Neishabouri, M. R., & Sepaskhah, A. R. (2012). Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma, 173–174, 111–118. doi:10.1016/j.geoderma.2011.12.005.

    Article  Google Scholar 

  • De Benedetto, D., Castrignanò, A., Rinaldi, M., Ruggieri, S., Santoro, F., Figorito, B., et al. (2013). An approach for delineating homogeneous zones by using multi-sensor data. Geoderma, 199, 117–127. doi:10.1016/j.geoderma.2012.08.028.

    Article  Google Scholar 

  • Diker, K., Heermann, D., & Brodahl, M. (2004). Frequency analysis of yield for delineating yield response zones. Precision Agriculture, 5(5), 435–444.

    Article  Google Scholar 

  • Franzen, D. W., Hopkins, D. H., Sweeney, M. D., Ulmer, M. K., & Halvorson, A. D. (2002). Evaluation of soil survey scale for zone development of site-specific nitrogen management. Agronomy Journal, 94(2), 381–389. doi:10.2134/agronj2002.3810.

    Article  Google Scholar 

  • Gamanya, R., De Maeyer, P., & De Dapper, M. (2009). Object-oriented change detection for the city of Harare Zimbabwe. Expert Systems with Applications, 36(1), 571–588. doi:10.1016/j.eswa.2007.09.067.

    Article  Google Scholar 

  • Gorodetzky, D. (2002). spectral_derivative.sav. (pp. CODE LIBRARY). Retrieved January 17, 2017, from http://www.harrisgeospatial.com/.

  • Guastaferro, F., Castrignanò, A., Benedetto, D., Sollitto, D., Troccoli, A., & Cafarelli, B. (2010). A comparison of different algorithms for the delineation of management zones. Precision Agriculture, 11(6), 600–620. doi:10.1007/s11119-010-9183-4.

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

    Article  Google Scholar 

  • Hbirkou, C., Pätzold, S., Mahlein, A.-K., & Welp, G. (2012). Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale. Geoderma, 175–176, 21–28. doi:10.1016/j.geoderma.2012.01.017.

    Article  Google Scholar 

  • Johansen, K., Coops, N. C., Gergel, S. E., & Stange, Y. (2007). Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification. Remote Sensing of Environment, 110(1), 29–44.

    Article  Google Scholar 

  • Johnson, C. K., Mortensen, D. A., Wienhold, B. J., Shanahan, J. F., & Doran, J. W. (2003). Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agronomy Journal, 95(2), 303–315. doi:10.2134/agronj2003.3030.

    Article  Google Scholar 

  • Lan, Y., Thomson, S. J., Huang, Y., Hoffmann, W. C., & Zhang, H. (2010). Current status and future directions of precision aerial application for site-specific crop management in the USA. Computers and Electronics in Agriculture, 74(1), 34–38. doi:10.1016/j.compag.2010.07.001.

    Article  Google Scholar 

  • Li, Y., Shi, Z., Li, F., & Li, H. Y. (2007). Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Computers and Electronics in Agriculture, 56(2), 174–186.

    Article  Google Scholar 

  • Liu, J. G., Miller, J. R., Haboudane, D., Pattey, E., & Nolin, M. C. (2005). Variability of seasonal CASI image data products and potential application for management zone delineation for precision agriculture. Canadian Journal of Remote Sensing, 31(5), 400–411.

    Article  Google Scholar 

  • López-Lozano, R., Casterad, M. A., & Herrero, J. (2010). Site-specific management units in a commercial maize plot delineated using very high resolution remote sensing and soil properties mapping. Computers and Electronics in Agriculture, 73(2), 219–229. doi:10.1016/j.compag.2010.04.011.

    Article  Google Scholar 

  • McBratney, A., Mendonça Santos, M. D. l, & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1), 3–52.

    Article  Google Scholar 

  • Moral, F. J., Terrón, J. M., & Da Silva, J. M. (2010). Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil and Tillage Research, 106(2), 335–343.

    Article  Google Scholar 

  • Moran, M. S., Inoue, Y., & Barnes, E. M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61(3), 319–346. doi:10.1016/S0034-4257(97)00045-X.

    Article  Google Scholar 

  • Ouyang, Z.-T., Zhang, M.-Q., Xie, X., Shen, Q., Guo, H.-Q., & Zhao, B. (2011). A comparison of pixel-based and object-oriented approaches to VHR imagery for mapping saltmarsh plants. Ecological Informatics, 6(2), 136–146. doi:10.1016/j.ecoinf.2011.01.002.

    Article  Google Scholar 

  • Pedroso, M., Taylor, J., Tisseyre, B., Charnomordic, B., & Guillaume, S. (2010). A segmentation algorithm for the delineation of agricultural management zones. Computers and Electronics in Agriculture, 70(1), 199–208. doi:10.1016/j.compag.2009.10.007.

    Article  Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.

    Article  Google Scholar 

  • Roujean, J.-L., & Breon, F.-M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384.

    Article  Google Scholar 

  • Rouse, J. W., R. H. Haas, J. A. Schell, & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. In Third ERTS Symposium, 1973 (pp. 309–317): NASA SP-351 I.

  • Scudiero, E., Teatini, P., Corwin, D. L., Deiana, R., Berti, A., & Morari, F. (2013). Delineation of site-specific management units in a saline region at the Venice Lagoon margin, Italy, using soil reflectance and apparent electrical conductivity. Computers and electronics in agriculture, 99, 54–64.

    Article  Google Scholar 

  • Senay, G., Ward, A., Lyon, J., Fausey, N., & Nokes, S. (1998). Manipulation of high spatial resolution aircraft remote sensing data for use in site-specific farming. Transactions of the ASAE, 41(2), 489–496.

    Article  Google Scholar 

  • Simbahan, G., Dobermann, A., & Ping, J. (2004). Screening yield monitor data improves grain yield maps. Agronomy Journal, 96(4), 1091–1102.

    Article  Google Scholar 

  • Steven, M. D. (1998). The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sensing of Environment, 63(1), 49–60. doi:10.1016/S0034-4257(97)00114-4.

    Article  Google Scholar 

  • Tian, J., & Chen, D. M. (2007). Optimization in multi-scale segmentation of high-resolution satellite images for artificial feature recognition. International Journal of Remote Sensing, 28(20), 4625–4644.

    Article  Google Scholar 

  • Uno, Y., Prasher, S., Lacroix, R., Goel, P., Karimi, Y., Viau, A., et al. (2005). Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Computers and Electronics in Agriculture, 47(2), 149–161.

    Article  Google Scholar 

  • USDA-NRCS .(1978). Soil Survey Kings County, California. In U. N. R. C. Service (Ed.). Washington, DC, USA: USDA Soil conservation service U.S. Gov. Print.

  • Van Coillie, F. M., Verbeke, L. P., & De Wulf, R. R. (2007). Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders Belgium. Remote Sensing of Environment, 110(4), 476–487.

    Article  Google Scholar 

  • Yang, C., Everitt, J., Bradford, J., & Murden, D. (2009). Comparison of airborne multispectral and hyperspectral imagery for estimating grain sorghum yield. Transations of the ASABE, 52(2), 641–649.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Ustin, S. L., & Whiting, M. L. (2005). Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agronomy Journal, 97(3), 641–653. doi:10.2134/agronj2003.0257.

    Article  Google Scholar 

  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2–3), 113–132. doi:10.1016/S0168-1699(02)00096-0.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Program for new century excellent talents in Heilongjiang Provincial University, PRC, Postdoctoral start-up fund of Heilongjiang province (LBH-Q13026) and “Young Talents” Project of Northeast Agricultural University, PRC (14QC28). The study was conducted while the primary author was located at the University of California Davis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Ustin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Whiting, M.L., Ustin, S.L. et al. Maximizing the relationship of yield to site-specific management zones with object-oriented segmentation of hyperspectral images. Precision Agric 19, 348–364 (2018). https://doi.org/10.1007/s11119-017-9521-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-017-9521-x

Keywords

Navigation