Skip to main content
Log in

The value of precision for image-based decision support in weed management

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Decision support methodologies in precision agriculture should integrate the different dimensions composing the added complexity of operational decision problems. Special attention has to be given to the adequate knowledge extraction techniques for making sense of the collected data, processing the information for assessing decision makers and farmers in the efficient and sustainable management of the field. Focusing on weed management, the integration of operational aspects for weed spraying is an open challenge for modeling the farmers’ decision problem, identifying satisfactory solutions for the implementation of automatic weed recognition procedures. The objective of this paper is to develop a decision support methodology for detecting the undesired weed from aerial images, building an image-based viewpoint consisting in relevant operational knowledge for applying precision spraying. In this way, it is possible to assess the potential herbicide cost reductions of increased precision at the spraying device, selecting the appropriate weed precision spraying technology. Findings from this study indicate that the potential gains and marginal cost reductions of herbicides decrease significantly with increased precision in spraying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anglund, E. A., & Ayers, P. D. (2003). Field evaluation of response times for a variable rate (pressure-based and injection) liquid chemical applicator. Applied Engineering in Agriculture, 19, 273–282.

    Article  Google Scholar 

  • Bárdossy, A., & Samaniego, L. (2002). Fuzzy rule-based classification of remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing, 40, 362–374.

    Article  Google Scholar 

  • Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. Photogrammetry & Remote Sensing, 58, 239–258.

    Article  Google Scholar 

  • Bongiovanni, R., & Lowenberg-Deboer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5, 359–387.

    Article  Google Scholar 

  • Bullock, D. S., Kitchen, N., & Bullock, D. G. (2007). Multidisciplinary teams: A necessity for research in precision agriculture systems. Crop Science, 47, 1765–1769.

    Article  Google Scholar 

  • Fountas, S., Wulfsohn, D., Blackmore, B. S., Jacobsen, H. L., & Pedersen, S. M. (2006). A model of decision-making and information flows for information-intensive agriculture. Agricultural Systems, 87, 192–210.

    Article  Google Scholar 

  • Franco, C. (2014). On the analytic hierarchy process and decision support based on fuzzy-linguistic preference structures. Knowledge-Based Systems, 70, 203–211.

    Article  Google Scholar 

  • Franco, C., Pedersen, S. M., Papaharalampos, H., & Ørum, J. E. (2015). An image-based decision support methodology for weed management. In J. V. Stafford (Ed.), Precision agriculture’15 (pp. 595–601). Netherlands: Wageningen.

    Chapter  Google Scholar 

  • Grisso, R., Alley, M., Thomason, W., Holshouser, D. & Roberson, G.T. (2011). Precision Farming Tools: Variable-Rate Application. Resource document: Virginia Cooperative Extention. https://pubs.ext.vt.edu/442/442-505/442-505_PDF.pdf.

  • Gutjahr, C., & Gerhards, R. (2010). Decision rules for site-specific weed management. In E. C. Oerke, R. Gerhards, G. Menz, & R. A. Sikora (Eds.), Precision crop protection—the challenge and use of heterogeneity (pp. 223–239). Netherlands: Springer.

    Chapter  Google Scholar 

  • Heermann, D. F., Hoeting, J., Thompson, S. E., Duke, H. R., Westfall, D. G., Buchleiter, G. W., et al. (2002). Interdisciplinary irrigated precision farming research. Precision Agriculture, 3, 47–61.

    Article  Google Scholar 

  • Hemming, J., & Rath, T. (2001). Computer-vision-based weed identification under field conditions using controlled lighting. Journal of Agricultural Engineering Research, 78, 233–243.

    Article  Google Scholar 

  • Jensen, H. G., Jacobsen, L. B., Pedersen, S. M., & Tavella, E. (2012). Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precision Agriculture, 13, 661–677.

    Article  Google Scholar 

  • Kitchen, N. R. (2008). Emerging technologies for real-time and integrated agriculture decisions. Computers and Electronics in Agriculture, 61, 1–3.

    Article  Google Scholar 

  • Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications. New Jersey: Prentice Hall.

    Google Scholar 

  • Lucas, R., Rowlands, A., Brown, A., Keyworth, S., & Bunting, P. (2007). Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS Journal of Photogrammetry & Remote Sensing, 62, 165–185.

    Article  Google Scholar 

  • Lund, I., Christensen, S., Jensen, L. A., Jensen, P. K., Olsen, H. J., Søgaard, H. T. et al. (2008) Cellesprøjtning af ukrudt i majs. Pesticide research document. Resource document: Ministry of Environment of Denmark. http://www2.mst.dk/udgiv/publikationer/2008/978-87-7052-851-1/978-87-7052-851-1/pdf/978-87-7052-852-8.pdf.

  • Lund, I., Søgaard, H. T. & Graglia, E. (2006) Micro-spraying with one drop per weed plant. Proceedings of Plantekongres 2006, Arhus, Denmark, January 10–11, 2006.

  • Meyer, G. E., Neto, J. C., Jones, D. D., & Hindman, T. W. (2004). Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Computers and Electronics in Agriculture, 42, 161–180.

    Article  Google Scholar 

  • Middeldatabasen (2017) SEGES—Knowledge centre for agriculture. Resource document: www.middeldatabasen.dk.

  • Pedersen, S. M. (2003). Precision farming—technology assessment of site-specific input application in cereals. DTU: IPL.

    Google Scholar 

  • Pedersen, S. M., Fountas, S., Blackmore, S., Gylling, M., & Pedersen, J. L. (2004). Adoption and perspectives of precision farming in Denmark. Acta Agriculturæ Scandinavica Section B, Soil and Plant Science, 54, 2–6.

    Google Scholar 

  • Peña, J. M., Torres-Sánchez, J., Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE, 8, 1–11.

    Google Scholar 

  • Rasmussen, J., Nielsen, J., Garcia-Ruiz, F., Christensen, S., & Streibig, J. C. (2013). Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Research, 53, 242–248.

    Article  Google Scholar 

  • Slaughter, D. C., Giles, D. K., & Downey, D. (2008). Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture, 61, 63–78.

    Article  Google Scholar 

  • Sorensen, C. G., Pesonen, L., Fountas, S., Suomi, P., Bochtis, D., Bildsøe, P., et al. (2010). A user-centric approach for information modelling in arable farming. Computers and Electronics in Agriculture, 73, 44–55.

    Article  Google Scholar 

  • Stafford, J. V., & Miller, P. C. H. (1993). Spatially selective application of herbicide to cereal crops. Computers and Engineering in Agriculture, 9, 217–229.

    Article  Google Scholar 

  • Tagarakis, A., Liakos, V., Fountas, S., Koundouras, S., & Gemtos, T. A. (2013). Management zones delineation using fuzzy clustering techniques in grapevines. Precision Agriculture, 14, 18–39.

    Article  Google Scholar 

  • Thompson, J. F., Stafford, J. V., & Miller, P. C. H. (1991). Potential for automatic weed detection and selective herbicide application. Crop Protection, 10, 254–259.

    Article  Google Scholar 

  • van de Zande, J. C., Achten, V. T., Kempenaar, C., Michielsen, J. M., van der Schans, D., de Boer, J., et al. (2009). SensiSpray: site-specific precise dosing of pesticides by on-line sensing. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Precision agriculture’09 (pp. 785–792). Netherlands: Wageningen.

    Google Scholar 

  • Walter, A. M. & Heisel, T. (2001) Precision application of herbicides using injection sprayer systems. In G. Grenier, S. Blackmore (Eds.), Proceedings of the 3rd European Conference on Precision Agriculture (pp. 611–616). France: agro Montpellier.

  • Whelan, B. M., & McBratney, A. B. (2001). The “null hypothesis” of precision agriculture management. Precision Agriculture, 2, 265–279.

    Article  Google Scholar 

  • Zadeh, L. A. (1975). Fuzzy logic and approximate reasoning. Synthese, 30, 407–428.

    Article  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Innovation Fund Denmark (InnovationsFonden), under the Future Cropping partnership. Authors would also like to thank Prof. Jesper Rasmussen, from University of Copenhagen, for making available the images used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, C., Pedersen, S.M., Papaharalampos, H. et al. The value of precision for image-based decision support in weed management. Precision Agric 18, 366–382 (2017). https://doi.org/10.1007/s11119-017-9520-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-017-9520-y

Keywords

Navigation