Skip to main content
Log in

Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

LiDAR sensors are widely used in many areas and, in recent years, that includes agricultural tasks. In this work, a self-developed mobile terrestrial laser scanner based on a 2D light detection and ranging (LiDAR) sensor was used to scan an intensive olive orchard, and different algorithms were developed to estimate canopy volume. Canopy volume estimations derived from LiDAR sensor readings were compared to conventional estimations used in fruticulture/horticulture research and the results prove that they are equivalent with coefficients of correlation ranging from r = 0.56 to r = 0.82 depending on the algorithms used. Additionally, tools related to analysis of point cloud data from the LiDAR-based system are proposed to extract further geometrical and structural information from tree row crop canopies to be offered to farmers and technical advisors as digital raster maps. Having high spatial resolution information on canopy geometry (i.e., height, width and volume) and on canopy structure (i.e., light penetrability, leafiness and porosity) may result in better orchard management decisions. Easily obtainable, reliable information on canopy geometry and structure may favour the development of decision support systems either for irrigation, fertilization or canopy management, as well as for variable rate application of agricultural inputs in the framework of precision fruticulture/horticulture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arnó, J., Escolà, A., Vallès, J. M., Llorens, J., Sanz, R., Masip, J., et al. (2013). Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Precision Agriculture, 14(3), 290–306.

    Article  Google Scholar 

  • Auat Cheein, F. A., Guivant, J., Sanz, R., Escolà, A., Yandún, F., Torres-Torriti, M., et al. (2015). Real-time approaches for characterization of fully and partially scanned canopies in groves. Computers and Electronics in Agriculture, 118, 361–371.

    Article  Google Scholar 

  • Chen, Y., Zhu, H., & Ozkan, H. E. (2013). Real-time tree foliage density estimation with laser scanning sensor for variable-rate tree sprayer development. Paper no 131596009. St Joseph, MI, USA: ASABE.

    Google Scholar 

  • Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., et al. (2012). On the use of depth camera for 3D phenotyping of entire plants. Computers and Electronics in Agriculture, 82, 122–127.

    Article  Google Scholar 

  • CloudCompare [GPL software] v2.6.1. (2015). http://www.cloudcompare.org. Accessed on May 13, 2015.

  • Díaz-Varela, R., de la Rosa, R., León, L., & Zarco-Tejada, P. (2015). High-Resolution airborne uav imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sensing, 7(4), 4213–4232.

    Article  Google Scholar 

  • Escolà, A. Camp, F. Solanelles, F. Llorens, J. Planas, S. Rosell, J. R. et al. (2007). Variable dose rate sprayer prototype for tree crops based on sensor measured canopy characteristics. In J. V Stafford (Ed.), Precision Agriculture’07. Proceedings of the 6th European Conference on Precision Agriculture (pp. 563–571). The Netherlands: Wageningen Academic Publishers.

  • Escolà, A., Martinez-Casasnovas. J. M.. Rufat, J., Arbones, A., Sanz, R., Sebe, F., et al. (2015). A mobile terrestrial laser scanner for tree crops: point cloud generation, information extraction and validation in an intensive olive orchard. In J. V Stafford (Ed.), Precision Agriculture’15. Proceedings of the 10th European Conference on Precision Agriculture (pp. 337–344). The Netherlands: Wageningen Academic Publishers.

  • Gil, E., Arnó, J., Llorens, J., Sanz, R., Llop, J., Rosell-Polo, J., et al. (2014). Advanced technologies for the improvement of spray application techniques in Spanish Viticulture: An overview. Sensors, 14(1), 691–708.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gongal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2015). Sensors and systems for fruit detection and localization: A review. Computers and Electronics in Agriculture, 116, 8–19.

    Article  Google Scholar 

  • Lee, K. H., & Ehsani, R. (2009). A laser scanner based measurement system for quantification of citrus tree geometric characteristics. Applied Engineering in Agriculture, 25(5), 777–788.

    Article  Google Scholar 

  • Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant phenotyping. Sensors, 14(11), 20078–20111.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lordan, J., Pascual, M., Fonseca, F., Montilla, V., Papio, J., Rufat, J., et al. (2015). An image-based method to study the fruit tree canopy and the pruning biomass production in a peach orchard. HortScience, 50(12), 1809–1817.

    Google Scholar 

  • Méndez, V., Rosell-Polo, J. R., Sanz, R., Escolà, A., & Catalán, H. (2014). Deciduous tree reconstruction algorithm based on cylinder fitting from mobile terrestrial laser scanned point clouds. Biosystems Engineering, 124, 78–88.

    Article  Google Scholar 

  • Miranda-Fuentes, A., Llorens, J., Gamarra-Diezma, J., Gil-Ribes, J., & Gil, E. (2015). Towards an optimized method of olive tree crown volume measurement. Sensors, 15(2), 3671–3687.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moorthy, I., Miller, J. R., Berni, J. A. J., Zarco-Tejada, P., Hu, B., & Chen, J. (2011). Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology, 151(2), 204–214.

    Article  Google Scholar 

  • Nock, C. A., Taugourdeau, O., Delagrange, S., & Messier, C. (2013). Assessing the potential of low-cost 3D cameras for the rapid measurement of plant woody structure. Sensors, 13(12), 16216–16233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pallejà, T., Tresánchez, M., Teixidó, M., Sanz, R., Rosell, J. R., & Palacín, J. (2010). Sensitivity of tree volume measurement to trajectory errors from a terrestrial LIDAR scanner. Agricultural and Forest Meteorology, 150(11), 1420–1427.

    Article  Google Scholar 

  • Rosell, J. R., Llorens, J., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., et al. (2009a). Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology, 149(9), 1505–1515.

    Article  Google Scholar 

  • Rosell, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124–141.

    Article  Google Scholar 

  • Rosell, J. R., Sanz, R., Llorens, J., Arnó, J., Escolà, A., Ribes-Dasi, M., et al. (2009b). A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering, 102(2), 128–134.

    Article  Google Scholar 

  • Rosell-Polo, J. R., Cheein, F. A., Gregorio, E., Andújar, D., Puigdomènech, L., Masip, J., et al. (2015). Advances in structured light sensors applications in precision agriculture and livestock farming. Advances in Agronomy, 133, 71–112.

    Article  Google Scholar 

  • Rufat, J., Villar, J. M., Pascual, M., Falguera, V., & Arbonés, A. (2014). Productive and vegetative response to different irrigation and fertilization strategies of an Arbequina olive orchard grown under super-intensive conditions. Agricultural Water Management, 144, 33–41.

    Article  Google Scholar 

  • Sanz-Cortiella, R., Llorens-Calveras, J., Escolà, A., Arnó-Satorra, J., Ribes-Dasi, M., Masip-Vilalta, J., et al. (2011). Innovative LIDAR 3D dynamic measurement system to estimate fruit-tree leaf area. Sensors, 11(6), 5769–5791.

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres-Sánchez, J., López-Granados, F., Serrano, N., Arquero, O., & Peña, J. M. (2015). High-Throughput 3-D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology. PLoS ONE, 10(6), e0130479.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walklate, P. J. (1989). A Laser scanning instrument for measuring crop geometry. Agricultural and Forest Meteorology, 46, 275–284.

    Article  Google Scholar 

  • Walklate, P. J., Cross, J. V., Richardson, G. M., Murray, R. A., & Baker, D. E. (2002). Comparison of different spray volume deposition models using LIDAR measurements of apple orchards. Biosystems Engineering, 82(3), 253–267.

    Article  Google Scholar 

  • Wang, Z., Zhang, L., Fang, T., Mathiopoulos, P. T., Qu, H., Chen, D., et al. (2014). A Structure-aware global optimization method for reconstructing 3-D Tree models from terrestrial laser scanning data. IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5653–5669.

    Article  Google Scholar 

  • Wei, J., & Salyani, M. (2005). Development of a laser scanner for measuring tree canopy characteristics: phase 2. Foliage density measurement. Transactions of the ASABE, 48(4), 1595–1601.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V., & Loudjani, P. (2014). Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55, 89–99.

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank Ricardo Sanz, Joan Masip, Josep M. Villar and Manel Ribes-Dasi for their contributions to the different phases of the present study.

Funding

This work was funded by the Spanish Ministry of Economy and Competitiveness through the projects SAFESPRAY (AGL2010-22304-C04-03) and AgVANCE (AGL2013-48297-C2-2-R) and by the project Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria RTA2012-00059-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Escolà.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escolà, A., Martínez-Casasnovas, J.A., Rufat, J. et al. Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds. Precision Agric 18, 111–132 (2017). https://doi.org/10.1007/s11119-016-9474-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9474-5

Keywords

Navigation