Skip to main content

Advertisement

Log in

Developing a new Crop Circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Active canopy sensor (ACS)—based precision nitrogen (N) management (PNM) is a promising strategy to improve crop N use efficiency (NUE). The GreenSeeker (GS) sensor with two fixed bands has been applied to improve winter wheat (Triticum aestivum L.) N management in North China Plain (NCP). The Crop Circle (CC) ACS-470 active sensor is user configurable with three wavebands. The objective of this study was to develop a CC ACS-470 sensor-based PNM strategy for winter wheat in NCP and compare it with GS sensor-based N management strategy, soil Nmin test-based in-season N management strategy and conventional farmer’s practice. Four site-years of field N rate experiments were conducted from 2009 to 2013 to identify optimum CC vegetation indices for estimating early season winter wheat plant N uptake (PNU) and grain yield in Quzhou Experiment Station of China Agricultural University located in Hebei province of NCP. Another nine on-farm experiments were conducted at three different villages in Quzhou County in 2012/2013 to evaluate the performance of the developed N management strategy. The results indicated that the CC ACS-470 sensor could significantly improve estimation of early season PNU (R2 = 0.78) and grain yield (R2 = 0.62) of winter wheat over GS sensor (R2 = 0.60 and 0.33, respectively). All three in-season N management strategies achieved similar grain yield as compared with farmer’s practice. The three PNM strategies all significantly reduced N application rates and increased N partial factor productivity (PFP) by an average of 61–67 %. It is concluded that the CC sensor can improve estimation of early season winter wheat PNU and grain yield as compared to the GS sensor, but the PNM strategies based on these two sensors perform equally well for improving winter wheat NUE in NCP. More studies are needed to further develop and evaluate these active sensor-based PNM strategies under more diverse on-farm conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnes, E., Clarke, T., Richards, S., Colaizzi, P., Haberland, J., & Kostrzewski, M. et al. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Proceding the 5th international conference on precision agriculture. 16–19 July 2000, Bloomington, MN.

  • Bijay-Singh, Sharma, R. K., Jaspreet-Kaur, Jat, M. L., Martin, K. L., Yadvinder-Singh, et al. (2011). Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agronomy for Sustainable Development, 31(3), 589–603.

  • Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.

    Article  Google Scholar 

  • Buschmann, C., & Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing, 14(4), 711–722.

    Article  Google Scholar 

  • Cao, Q., Cui, Z., Chen, X., Khosla, R., Dao, T. H., & Miao, Y. (2012). Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precision Agriculture, 13(1), 45–61.

    Article  Google Scholar 

  • Cao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., et al. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112, 54–67.

    Article  Google Scholar 

  • Cao, Q., Miao, Y., Shen, J., Yu, W., Yuan, F., Cheng, S., et al. (2016). Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precision Agriculture, 17(2), 136–154.

    Article  Google Scholar 

  • Cao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R., et al. (2013). Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Research, 154, 133–144.

    Article  Google Scholar 

  • Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229–242.

    Article  Google Scholar 

  • Chen, X., Zhang, F., Römheld, V., Horlacher, D., Schulz, R., Böning-Zilkens, M., et al. (2006). Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutrient Cycling in Agroecosystems, 74(2), 91–98.

    Article  Google Scholar 

  • Cui, Z., Zhang, F., Chen, X., Dou, Z., & Li, J. (2010). In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Research, 116(1–2), 140–146.

    Article  Google Scholar 

  • Cui, Z., Zhang, F., Chen, X., Miao, Y., Li, J., Shi, L., et al. (2008). On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research, 105(1–2), 48–55.

    Article  Google Scholar 

  • Datt, B. (1999). Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, 20(14), 2741–2759.

    Article  Google Scholar 

  • Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B., & McMurtrey, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239.

    Article  Google Scholar 

  • Eitel, J., Keefe, R., Long, D., Davis, A., & Vierling, L. A. (2010). Active ground optical remote sensing for improved monitoring of seedling stress in nurseries. Sensors, 10(4), 2843–2850.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eitel, J., Long, D., Gessler, P., & Smith, A. (2007). Using in situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28(18), 4183–4190.

    Article  Google Scholar 

  • Erdle, K., Mistele, B., & Schmidhalter, U. (2011). Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Research, 124(1), 74–84.

    Article  Google Scholar 

  • Gitelson, A. A. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5), 1248. doi:10.1029/2002GL016450.

    Article  Google Scholar 

  • Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298.

    Article  Google Scholar 

  • Gitelson, A. A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology, 22, 247–252.

    Article  CAS  Google Scholar 

  • Gitelson, A. A., Vinã, A. S., Ciganda, V. N., & Rundquist, D. C. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters. doi:10.1029/2005GL022688.

    Google Scholar 

  • Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., et al. (2010). Significant acidification in major Chinese croplands. Science, 327(5968), 1008–1010.

    Article  CAS  PubMed  Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2), 416–426.

    Article  Google Scholar 

  • Holland, K., Lamb, D., & Schepers, J. (2012). Radiometry of proximal active optical sensors (AOS) for agricultural sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(6), 1793–1802.

    Article  Google Scholar 

  • Holland, K., & Schepers, J. (2010). Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agronomy Journal, 102(5), 1415–1424.

    Article  Google Scholar 

  • Holland, K. H., & Schepers, J. S. (2013). Use of a virtual-reference concept to interpret active crop canopy sensor data. Precision Agriculutre, 14, 71–85.

    Article  Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Article  Google Scholar 

  • Jasper, J., Reusch, S., & Link, A. (2009). Active sensing of the N status of wheat using optimized wave-length combination: Impact of seed rate, variety and growth stage. In E. J. V. Henten, D. Goense, & C. Lokhorst (Eds.), Precision agriculture’09. (pp. 23–30). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Jiang, A., Huang, W., Zhao, C., Liu, K., Liu, L., & Wang, J. (2007). Effects of variable nitrogen application based on characteristics of canopy light reflectance in wheat. Scientia Agricultura Sinica, 40(9), 1907–1913. (In Chinese with English abstract).

    CAS  Google Scholar 

  • Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., et al. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences USA, 106(9), 3041–3046.

    Article  CAS  Google Scholar 

  • Justice, C. O., Vermote, E., Townshend, J. R. G., DeFries, R., Roy, D. P., Hall, D. K., et al. (1998). The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228–1249.

    Article  Google Scholar 

  • Le Maire, G., Francois, C., & Dufrene, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89(1), 1–28.

    Article  Google Scholar 

  • Li, F., Miao, Y., Chen, X., Zhang, H., Jia, L., & Bareth, G. (2010). Estimating winter wheat biomass and nitrogen status using an active crop sensor. Intelligent Automation and Soft Computing, 16(6), 1221–1230.

    Google Scholar 

  • Li, F., Miao, Y., Zhang, F., Cui, Z., Li, R., Chen, X., et al. (2009). In-season optical sensing improves nitrogen use efficiency for winter wheat. Soil Science Society of America Journal, 73(5), 1566–1574.

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., et al. (2013). Enhanced nitrogen deposition over China. Nature, 494, 459–462.

    Article  CAS  PubMed  Google Scholar 

  • Lukina, E. V., Freeman, K. W., Wynn, K. J., Thomason, W. E., Mullen, R. W., Stone, M. L., et al. (2001). Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. Journal of Plant Nutrition, 24(6), 885–898.

    Article  CAS  Google Scholar 

  • Meng, Q., Sun, Q., Chen, X., Cui, Z., Yue, S., Zhang, F., et al. (2012). Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agriculture, Ecosystems & Environment, 146(1), 93–102.

    Article  Google Scholar 

  • Miao, Y., Stewart, B. A., & Zhang, F. (2011). Long-term experiments for sustainable nutrient management in China. A review. Agronomy for Sustainable Development, 31(2), 397–414.

    Article  Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A., Kerr, Y., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126.

    Article  Google Scholar 

  • Raper, T. B., Varco, J. J., & Hubbard, K. J. (2013). Canopy-based normalized difference vegetation index sensors for monitoring cotton nitrogen status. Agronomy Journal, 105(5), 1345–1354.

    Article  CAS  Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Lukina, E. V., Thomason, W. E., et al. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93(1), 131–138.

    Article  Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94(4), 815–820.

    Article  Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.

    Article  Google Scholar 

  • Roujean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384.

    Article  Google Scholar 

  • Shiratsuchi, L., Ferguson, R., Shanahan, J., Adamchuk, V., Rundquist, D., Marx, D., et al. (2011). Water and nitrogen effects on active canopy sensor vegetation indices. Agronomy Journal, 103(6), 1815–1826.

    Article  Google Scholar 

  • Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98(4), 968–977.

    Article  Google Scholar 

  • Thomason, W. E., Phillips, S. B., Davis, P. H., Warren, J. G., Alley, M. M., & Reiter, M. S. (2011). Variable nitrogen rate determination from plant spectral reflectance in soft red winter wheat. Precision Agriculture, 12(5), 666–681.

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.

    Article  Google Scholar 

  • Wang, J., Wang, E., Yang, X., Zhang, F., & Yin, H. (2012). Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change, 113(3–4), 825–840.

    Article  Google Scholar 

  • Yao, Y., Miao, Y., Cao, Q., Wang, H., Gnyp, M. L., Bareth, G., et al. (2014). In-season estimation of rice nitrogen status with an active crop canopy sensor. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), 4403–4413.

    Article  Google Scholar 

  • Yao, Y., Miao, Y., Huang, S., Gao, L., Ma, X., Zhao, G., et al. (2012). Active canopy sensor-based precision N management strategy for rice. Agronomy for Sustainable Development, 32(4), 925–933.

    Article  Google Scholar 

  • Yue, X., Hu, Y., Zhang, H., & Schmidhalter, U. (2015). Green Window approach for improving nitrogen management by farmers in small-scale wheat fields. The Journal of Agricultural Science, 153, 446–454.

    Article  Google Scholar 

  • Yue, S., Meng, Q., Zhao, R., Ye, Y., Zhang, F., Cui, Z., et al. (2012). Change in nitrogen requirement with increasing grain yield for winter wheat. Agronomy Journal, 104(6), 1687–1693.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Miller, J., Morales, A., Berjón, A., & Agüera, J. (2004). Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 90(4), 463–476.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Basic Research Program (2015CB150405), The Innovative Group Grant of Natural Science Foundation of China (31421092) and the Special Fund for Agriculture Profession (201103003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Miao, Y., Li, F. et al. Developing a new Crop Circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain. Precision Agric 18, 2–18 (2017). https://doi.org/10.1007/s11119-016-9456-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9456-7

Keywords

Navigation