Skip to main content
Log in

Inversion of a canopy reflectance model using hyperspectral imagery for monitoring wheat growth and estimating yield

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Applications of hyperspectral remote sensing data to derive relevant properties for precision agriculture are described. Green leaf area index, fraction of senescent material and grain yield are retrieved from the hyperspectral data. Two sensors were used to obtain these data; the airborne visible/infrared imaging spectrometer AVIS and the space-borne compact high-resolution imaging spectrometer CHRIS; they show the applicability of the methods to different spatial scales. In addition, the bi-directional observation capability of the CHRIS sensor is used to derive information about the average leaf angle of the canopies which are used to link canopy structure with phenological development. Derivation of the canopy properties, green leaf area index and fraction of senescent material was done with the radiative transfer model, SLC (soil–leaf–canopy). The results were used as input into the crop growth model PROMET-V to calculate grain yield. Two years of data from the German research project preagro are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bach, H., Begiebing, S., & Verhoef, W. (2005). Analyses of hyperspectral and directional CHRIS data for monitoring of agricultural crops using the canopy reflectance model SLC. In S. Liang, J. Liu, X. Li, R. Liu, & M. E. Schaepman (Eds.), Proceedings of the 9th iternational symposium on physical measurements and signatures in remote sensing (ISPMSRS) (Vol. XXXVI, pp. 72–75). Beijing, China: ISPRS.

  • Bach, H., Begiebing, S., & Verhoef, W. (2006). Application of the canopy reflectance model SLC for parameter retrieval of wheat based on CHRIS and AVIS data. In J. Sobrino (Ed.), Proceedings RAQRS’2006, second recent advances in quantitative remote sensing (pp. 278–283). Spain: University of València.

    Google Scholar 

  • Bach, H., & Mauser, W. (1994). Atmospheric correction of hyperspectral data in terms of the determination of plant parameters. In P. S. Chavez, Jr., C. M. Marino, & R. A. Schowengerdt (Eds.), Recent advances in remote sensing and hyperspectral remote sensing. SPIE, 2318, 52–62. doi:10.1117/12.197245.

  • Bach, H., & Verhoef, W. (2003). Sensitivity studies on the effect of surface soil moisture on canopy reflectance using the radiative transfer model GeoSAIL. In Proceedings, IEEE international geoscience and remote sensing symposium, 2003. IGARSS ’03 (Vol. 3, pp. 1679–1681). Piscataway, NJ, USA: IEEE Geoscience and Remote Sensing Society.

  • Barnsley, M., Settle, J., Cutter, M., Lobb, D., & Teston, F. (2004). The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere. IEEE Transactions on Geoscience and Remote Sensing, 42, 1512–1520. doi:10.1109/TGRS.2004.827260.

    Article  Google Scholar 

  • Beeri, O., & Peled, A. (2006). Spectral indices for precision agriculture monitoring. International Journal of Remote Sensing, 27, 2039–2047. doi:10.1080/01431160612331392950.

    Article  Google Scholar 

  • Berntsen, J., Thomsen, A., Schelde, K., Hansen, M., Knudsen, L., Broge, N., et al. (2006). Algorithms for sensor-based redistribution of nitrogen fertilizer in winter wheat. Precis Agric, 7, 65–83. doi:10.1007/s11119-006-9000-2.

    Article  Google Scholar 

  • Bréda, N. (2003). Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54, 2403–2417. doi:10.1093/jxb/erg263.

    Article  PubMed  Google Scholar 

  • Haboudane, D., Miller, J., Pattey, E., Zarco-Tejada, P., & Strachen, I. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337–352. doi:10.1016/j.rse.2003.12.013.

    Article  Google Scholar 

  • Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34, 75–91. doi:10.1016/0034-4257(90)90100-Z.

    Article  Google Scholar 

  • Koetz, B., Baret, F., Poilvéc, H., & Hill, J. (2005). Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sensing of Environment, 95, 115–124. doi:10.1016/j.rse.2004.11.017.

    Article  Google Scholar 

  • Larsolle, A., & Hamid Muhammed, H. (2007). Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density. Precis Agric, 8, 37–47. doi:10.1007/s11119-006-9027-4.

    Article  Google Scholar 

  • Lauvernet, C., Baret, F., Hascoet, L., Buis, S., & Dimet, F.-X. (2007). Multitemporal-patch ensemble inversion of coupled surface-atmosphere radiative transfer models for land surface characterization, Remote Sensing of Environment. doi: 10.1016/j.rse.2007.06.027 (in press, corrected proof).

  • Mauser, W. (2003). The airborne visible/infrared imaging spectrometer AVIS-2—multiangular and hyperspectral data for environmental analysis. In Proceedings, IEEE international of the geoscience and remote sensing symposium, 2003. IGARSS ’03 (Vol. 3, pp. 2020–2022). Piscataway, NJ, USA: IEEE Geoscience and Remote Sensing Society.

  • Mutanga, O., & Skidmore, A. K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25, 3999–4014. doi:10.1080/01431160310001654923.

    Article  Google Scholar 

  • Oppelt, N., & Mauser, W. (2004). Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data. International Journal of Remote Sensing, 25, 145–159. doi:10.1080/0143116031000115300.

    Article  Google Scholar 

  • Reyniers, M., & Vrindts, E. (2006). Measuring wheat nitrogen status from space and ground-based platform. International Journal of Remote Sensing, 27, 549–567. doi:10.1080/01431160500117907.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., Harlan, J. C. (1974). Monitoring the vernal advancement of retrogradiation of natural vegetation. In NASA/GSFC, Type III, Final Report (371 pp). Greenbelt, MD, USA.

  • Schneider, K. (2003). Assimilating remote sensing data into a land-surface process mode. International Journal of Remote Sensing, 24, 2959–2980. doi:10.1080/01431160210154803.

    Article  Google Scholar 

  • Stuffler, T., Kaufmann, C., Hofer, S., Förster, K. P., Schreier, G., Müller, A., et al. (2007). The EnMAP hyperspectral imager—an advanced optical payload for future applications in earth observation programs. Acta Astronautica, 61, 115–120. doi:10.1016/j.actaastro.2007.01.033.

    Article  Google Scholar 

  • Verhoef, W. (1985). Earth observation modeling based on layer scattering matrices. Remote Sensing of Environment, 17, 165–178. doi:10.1016/0034-4257(85)90072-0.

    Article  Google Scholar 

  • Verhoef, W., & Bach, H. (2003). Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sensing of Environment, 87, 23–41. doi:10.1016/S0034-4257(03)00143-3.

    Article  Google Scholar 

  • Verhoef, W., & Bach, H. (2007). Coupled soil–leaf–canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sensing of Environment, 109, 166–182. doi:10.1016/j.rse.2006.12.013.

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out through sub-project “Canopy status assessment using remote sensing for model based yield estimation “of pre agro, which is a collaborative research project funded by the German Federal Ministry of Education and Research (BMBF), under grant reference number FK0330679. The work was also supported by ESA and SSTL with provision of CHRIS PROBA data. Special thanks to W. Verhoef (NLR) for his support in surface reflectance modelling and SLC applications. The authors take full responsibility for the content of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Migdall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migdall, S., Bach, H., Bobert, J. et al. Inversion of a canopy reflectance model using hyperspectral imagery for monitoring wheat growth and estimating yield. Precision Agric 10, 508–524 (2009). https://doi.org/10.1007/s11119-009-9104-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-009-9104-6

Keywords

Navigation