Skip to main content
Log in

Variable-rate fungicide spraying in real time by combining a plant cover sensor and a decision support system

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

In recent years, real-time technology has been introduced into the practice of spraying variable fungicide rates in cereal fields. Plant parameters for characterising heterogeneous plant growth such as biomass or plant surface area can be indirectly detected by the sensor CROP-Meter. The sensor signal is correlated with the Leaf Area Index, which can be used to adapt the application rate. However, this relatively simple method of controlling variable-rate fungicide application does not take into account the differences in disease distribution. In practice, decision support systems such as proPlant expert.classic can provide information about disease infection probabilities, application time, fungicide products and application rates for uniform spraying. A prototype of the system proPlant expert.precise was developed to estimate infection risks from fungal diseases using weather and field-specific data for up to three management areas with different yield expectations. The system also considers economic factors such as expected yield and costs of the fungicide products in generating a spraying map with different fungicide dosages. The information from the CROP-Meter (sensor) and from the decision support system proPlant expert.precise (map) was combined to provide a real-time spraying system with map overlay. The system was tested in 2007 in three winter wheat fields. Compared with conventional uniform spraying the CROP-Meter with map overlay treatment resulted in up to 32.6% fungicide savings (CROP-Meter versus uniform: up to 20.3%). There was no yield reduction on average when the sensor-controlled spraying technologies were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anonymous. (1972). Biometrische Versuchsplanung (Biometric design of experiments.). Berlin, Germany: VEB Deutscher Landwirtschaftsverlag.

    Google Scholar 

  • Anonymous. (1999). SunScan user manual. Cambridge, UK: Delta-T Devices.

    Google Scholar 

  • Augustin, B. (1992). Reduction of application rates (in German). Top Agrar, 9, 76–80.

    Google Scholar 

  • Bjerre, K. D. (1999). Disease maps and site-specific fungicide application in winter wheat. In J. V. Stafford (Ed.), Precision Agriculture ‘99: Proceedings of the 2nd European Conference on Precision Agriculture (pp. 495–504). Sheffield, UK: Sheffield Academic.

  • Broscious, S. C., Frank, J. A., & Frederick, J. R. (1985). Influence of winter wheat management practices on the severity of powdery mildew and Septoria blotch in Pennsylvania. Phytopathology, 75, 538–542.

    Article  Google Scholar 

  • Burth, U., Hartleb, W., Hartmann, W., & Hamann, W. (1990). Zur variablen, situationsbezogenen Bemessung der Aufwandmenge bei der Applikation von Pflanzenschutzmitteln. (Variable situation based adaptation of the application rate of pesticides). Nachrichtenblatt für den Pflanzenschutzdienst in der DDR, 44, 194–196.

    Google Scholar 

  • Dammer, K.-H. (2005). Demonstration der Langzeitwirkung bedarfsorientierter Fungizidbehandlung mit dem CROP-Meter (Demonstration of the long-term effect of a demand-related fungicide treatment with the CROP-Meter). Bornimer Agrartechnische Berichte, Heft 41, Leibniz-Institut für Agrartechnik, Potsdam-Bornim, Germany.

  • Dammer, K.-H., & Ehlert, D. (2006). Variable-rate fungicide spraying in cereals using a plant cover sensor. Precision Agriculture, 7, 137–148.

    Article  Google Scholar 

  • Dammer, K.-H., Wollny, J., & Giebel, A. (2008). Estimation of the Leaf Area Index in cereal crops for variable rate fungicide spraying. European Journal of Agronomy, 28, 351–360.

    Article  Google Scholar 

  • Ehlert, D., & Dammer, K.-H. (2006). Widescale testing of the CROP-Meter for site-specific farming. Precision Agriculture, 7, 101–115.

    Article  Google Scholar 

  • Ehlert, D., Hammen, V., & Adamek, R. (2003). On-line sensor pendulum-Meter for determination of plant mass. Precision Agriculture, 4, 139–148.

    Article  Google Scholar 

  • Ehlert, D., Schmerler, J., & Völker, U. (2004). Variable rate nitrogen fertilization of winter wheat based on a crop density sensor. Precision Agriculture, 5, 263–273.

    Article  Google Scholar 

  • Gooding, M. J., Dimmock, J. P. R. E., France, J., & Jones, S. A. (2000). Green leaf area decline of wheat flag leaves: The influence of fungicides and relationships with mean grain weight and grain yield. Annals of Applied Biology, 136, 77–84.

    Article  CAS  Google Scholar 

  • Kleinhenz, B., Jörg, E., Kluge, E., & Rossberg, D. (1995). PASO—Rechnergestützte Entscheidungshilfen für den Pflanzenschutz. Gesunde Pflanzen, 47, 222–230.

    Google Scholar 

  • Kranz, J., & Rotem, J. (Eds.). (1988). Experimental techniques in plant disease epidemiology. Berlin, Germany: Springer-Verlag, pp. 299

  • Jeger, M. J. (Ed.). (1989). Spatial components of plant disease epidemics. Englewood Cliffs, USA: Prentice Hall, pp. 243.

  • Larbi, A., & Mekliche, A. (2004). Relative water content (RWC) and leaf senescence as screening tools for drought tolerance in wheat. In C. Cantero-Martinez & D. Cabina (Eds.), Mediterranean rainfed agriculture: Strategies for sustainability: Final Seminar of the Regional Action Program on Rainfed Agriculture, 2–3 June 2003, Zaragoza, Spain. Options Mediterraneennes. Series A, Seminaires Mediterraneens (Vol. 60, pp. 193–196). Paris: International Centre for Advanced Mediterranean Agronomic Studies.

  • Lovell, D. J., Parker, S. R., Hunter, T., Royle, D. J., & Coker, R. R. (1997). Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat. Plant Pathology, 46, 126–138.

    Article  Google Scholar 

  • Murray, G. M., Ellison, P. J., Watson, A., & Cullis, B. R. (1994). The relationship between wheat yield and stripe rust as affected by length of epidemic and temperature at the grain development stage of crop growth. Plant Pathology, 43, 397–405.

    Article  Google Scholar 

  • Newe, M., Meier, H., Johnen, A., & Volk, T. (2003). proPlant expert.com: The online consultation system on crop protection in cereals, rapeseed, potatoes and sugar beet: A concept that meets the requirements of farmers and consultants in both Germany and Europe. Bulletin OECP/EPPO Bulletin, 33, 443–449.

    Google Scholar 

  • Park, R. F., Ash, G. J., & Rees, R. G. (1992). Effect of temperature on the response of some Australian wheat cultivars to Puccinia striiformis f. sp. tritici. Mycological Research, 96, 166–170.

    Article  Google Scholar 

  • Paveley, N. D., Clark, W. S., Sylvester-Bradley, R., Bryson, R. J., & Dampney, P. (1996). Responding to inter- and intra-field variation to optimise foliar disease management in wheat. In Brighton Crop Protection Conference, Pests and Diseases, Brighton, UK, pp. 1227–1234.

  • Rozalski, K., Pudelko, J., & Skrzypczak, G. (1998). Disease incidence in winter wheat and spring triticale as influenced by crop protection and nitrogen. Progress in Plant Protection, 38, 551–554.

    Google Scholar 

  • Secher, B. J. M. (1997). Site specific control of diseases in winter wheat. Aspects of Applied Biology, 48, 57–65.

    Google Scholar 

  • Sentelhas, P. C., Pedro, M. J., & Felicio, J. C. (1993). Effects of different conditions of irrigation and crop density on microclimate and occurrence of spot blotch and powdery mildew. Bragantia, 52, 45–52.

    Article  Google Scholar 

  • Van der Plank, J. E. (1963). Plant diseases: Epidemics and control. London, UK: Academic, pp. 349.

    Google Scholar 

  • Verreet, J. A., Klink, H., & Hoffmann, G. M. (2000). Regional monitoring for disease prediction and optimisation of plant protection measures: The IPM wheat model. Plant Disease, 8, 816–826.

    Article  Google Scholar 

  • Welles, J. M., & Norman, J. M. (1991). Instrument for indirect measurement of canopy architecture. Agronomy Journal, 83, 818–825.

    Article  Google Scholar 

  • Wollny, J., Dammer, K.-H., Hau, B., & Volk, T. (2006). Quantifizierung des Abreifeverhaltens von Weizenbeständen als Grundlage zur Fungizidmengenbemessung im teilflächenspezifischen Pflanzenschutz (Quantification of the senescence process in wheat as the basis of assessing the fungicide amount in site-specific plant protection). In 55. Deutsche Pflanzenschutztagung: Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Heft 400, Parey Berlin, Berlin, Germany, pp. 68–69.

  • Wollny, J., Dammer, K.-H., Hau, B., Volk, T., & Wischke, T. (2007). Site-specific disease control in wheat by combining the CROP-Meter with the decision support system proPlant. In J. V. Stafford (Ed.), Precision Agriculture ‘07, Proceedings of the 2nd European Conference on Precision Agriculture (pp. 783–789). Netherlands: Wageningen Academic Publishers.

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (BMBF) within the research project preagro (No. 0330667). Furthermore, we would like to thank the farms Nuthequelle Agrar GmbH and WIMEX GmbH for supporting the field experiments and Dipl. agr. ing. Judith Wollny and the staff of the department for collecting and analysing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-H. Dammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dammer, KH., Thöle, H., Volk, T. et al. Variable-rate fungicide spraying in real time by combining a plant cover sensor and a decision support system. Precision Agric 10, 431–442 (2009). https://doi.org/10.1007/s11119-008-9088-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-008-9088-7

Keywords

Navigation