Skip to main content
Log in

Spherical Twists as the σ2-Harmonic Maps from n-Dimensional Annuli into \(\mathbb {S}^{n-1}\)

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let \(\mathbb {X} \subset \mathbb {R}^{n}\) be a bounded Lipschitz domain and consider the σ2-energy functional

$${\mathbb{F}_{\sigma_{2}}}[u; \mathbb{X}] := {\int}_{\mathbb{X}} \left|\wedge^{2} \nabla u\right|^{2} \, dx, $$

over the space of admissible Sobolev maps

$$\mathcal{A}(\mathbb{X}) :=\left\{u \in W^{1,4}(\mathbb{X}, \mathbb{S}^{n-1}) : u|_{\partial \mathbb{X}} = x|x|^{-1}\right\}. $$

In this article we address the question of multiplicity versus uniqueness for extremals and strong local minimisers of the σ2-energy funcional \(\mathbb F_{\sigma _{2}}[\cdot , \mathbb {X}]\) in \(\mathcal {A}(\mathbb {X})\) where the domain \(\mathbb X\) is n-dimensional annuli. We consider a topological class of maps referred to as spherical twists and examine them in connection with the Euler-Lagrange equations associated with σ2-energy functional over \(\mathcal {A}(\mathbb {X})\), the so-called σ2-harmonic map equation on \(\mathbb {X}\). The main result is a surprising discrepancy between even and odd dimensions. In even dimensions the latter system of equations admits infinitely many smooth solutions amongst such maps whereas in odd dimensions this number reduces to one. The result relies on a careful analysis of the full versus the restricted Euler-Lagrange equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. 1 School of Mathematics, Institute for Research in Fundamental Sciences, P.O.Box: 19395-5746, Tehran, Iran.

References

  1. Auckly, D., Kapitanski, L.: Analysis of \(\mathbb {S}^{2}\)-valued maps and Faddeev’s model. Comm. Math. Phys. 256(3), 611–620 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, J. M.: Some Open Problems in Elasticity, in Geometry, Mechanics and Dynamics, pp 3–59. Springer, New York (2002)

    Book  MATH  Google Scholar 

  3. Baird, P., Wood, J. C.: Harmonic Morphisms between Riemannian Manifolds. Clarendon Press, Oxford (2003)

    Book  MATH  Google Scholar 

  4. Bechtluft-Sachs, S.: Tension field and index form of energy-type functionals. Glasgow Math. J. 45(1), 117–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birman, J.S.: Braids, Links and Mapping Class Groups. Annals of Mathematics Studies Study, vol. 82. Princeton University Press, NJ (1975)

    Google Scholar 

  6. Chen, L., Wang, G.: σ 2-diffeomorphisms between 4-dimensional annuli. Calc. Var. & PDE 55(3), 49 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eells, J.: Certain variational principles in Riemannian geometry. Proc. V Int. Colloq. Diff. Geom. Santiago de Compostela, Pitman Research Notes 131, 46–60 (1985)

    MathSciNet  MATH  Google Scholar 

  8. Eells, J., Lemaire, L.: Selected topics in harmonic maps. American Mathematical Soc. (1983)

  9. Eells, J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iagar, R. G., Moll, S.: Rotationally symmetric p-harmonic maps from D 2 to S 2. Journal of Differential Equations 254(9), 3928–3956 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iwaniec, T., Onninen, J.: N-harmonic mappings between annuli: the art of integrating free Lagrangians. Mem. Amer. Math. Soc. 218, viii+ 105 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Knops, R. J., Stuart, C. A.: Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity. Arch. Rational Mech. Anal. 86(3), 233–249 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  14. Shahrokhi-Dehkordi, M. S., Shaffaf, J.: On critical points of the σ 2-energy over a space of measure preserving maps. Nonlinear Anal. Theory Methods Appl. 117, 65–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shahrokhi-Dehkordi, M. S., Taheri, A.: Generalised twists, stationary loops, and the dirichlet energy over a space. Calc Var. & PDE 35(2), 191–213 (2009)

    Article  MATH  Google Scholar 

  16. Shahrokhi-Dehkordi, M. S., Taheri, A.: Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps. J. Convex Anal. 17(1), 69–79 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Skyrme, T. H. R.: A non-linear field theory. Proc. Roy. Soc. London Ser. A 260 (1300), 127–138 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  18. Skyrme, T. H. R.: A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962)

    Article  MathSciNet  Google Scholar 

  19. Slobodeanu, R.: On the geometrized Skyrme and Faddeev models. J. Geom. Phys. 60(4), 643–660 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Slobodeanu, R., Svensson, M.: Skyrme-faddeev instantons on complex surfaces. Comm. Math. Phys. 335(1), 83–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Speight, J. M.: A pure skyrme instanton. Phys. Lett. B 659, 429–433 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Taheri, A.: Local minimisers and quasiconvexity - the impact of topology. Arch Rational Mech. Anal. 176(3), 363–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wood, C. M.: Some Energy-Related Functionals and Their Vertical Variational Theory. Ph.D. Thesis, University of Warwick (1983)

  24. Yang, Y., Lin, F. -H.: Analysis of Faddeev knots and Skyrme solitons: recent progress and open problems. In: Berestycki, H. et al. (eds.) Perspectives on Nonlinear Partial Differential Equations. Contemporary Mathematics, vol. 446, pp 319–344. American Mathematical Society (2007)

Download references

Acknowledgments

The author’s research was partially supported by the Iran National Science Foundation (No. 95850106) and a grant from IPMFootnote 1 (No. 96490117) both gratefully acknowledged. He is also greatly indebted to anonymous referee for their constructive comments on an earlier draught of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shahrokhi-Dehkordi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrokhi-Dehkordi, M.S. Spherical Twists as the σ2-Harmonic Maps from n-Dimensional Annuli into \(\mathbb {S}^{n-1}\). Potential Anal 50, 327–345 (2019). https://doi.org/10.1007/s11118-018-9684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-018-9684-8

Keywords

Mathematics Subject Classification (2010)

Navigation