Skip to main content
Log in

Quasi-regular Dirichlet Forms and \(L^p\)-resolvents on Measurable Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We prove that for any semi-Dirichlet form \({\left({\varepsilon,D{\left(\varepsilon\right)}}\right)}\) on a measurable Lusin space E there exists a Lusin topology with the given \(\sigma\)-algebra as the Borel \(\sigma\)-algebra so that \({\left({\varepsilon,D{\left(\varepsilon\right)}}\right)}\) becomes quasi-regular. However one has to enlarge E by a zero set. More generally a corresponding result for arbitrary \(L^p\)-resolvents is proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albeverio, S., Ma, Z.M., Röckner, M.: Regularization of Dirichlet spaces and applications. C. R. Acad. Sci. Paris Sér. I Math. 314, 859–864 (1992)

    MATH  Google Scholar 

  2. Albeverio, S., Ma, Z.M., Röckner, M.: Quasi-regular Dirichlet forms and Markov processes. J. Funct. Anal. 111, 118–154 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beznea, L., Boboc, N.: Potential Theory and Right Processes. Kluwer, New York (2004)

  4. Beznea, L., Boboc, N.: On the tightness of capacities associated with sub-Markovian resolvents. Bull. London Math. Soc. 37, 899–907 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carillo-Menendez, S.: Processus de Markov associé à une forme de Dirichlet non symétrique. Z. Wahrscheinlichkeitstheor. Verw. Geb. 33, 139–154 (1975)

    Article  Google Scholar 

  6. Chen, Z.Q., Ma, Z.M., Röckner, M.: Quasi-homeomorphisms of Dirichlet forms. Nagoya Math. J. 136, 1–15 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Dong, Z.: Quasi-regular topologies for Dirichlet forms on arbitrary Hausdorff spaces. Acta Math. Sinica, New Ser. 14(Supplement), 683–690 (1998)

    MATH  Google Scholar 

  8. Fitzsimmons, P.J.: On the quasi-regularity of semi-Dirichlet forms. Potential Anal. 15, 151–185 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter (1994)

  10. Getoor, R.K.: Transience and recurrence of Markov processes. In: Sém. de Probab. XIV (Lecture Notes in Math. 784), pp. 397–409. Springer, Berlin Heidelberg New York (1980)

  11. Getoor, R.K.: Excessive Measures. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  12. Kuznetsov, S.E.: On the existence of a homogeneous transition function. Teor. Veroyatnost. i Primenen. 31, 290–300 (1986). English translation: Theory Probab. Appl. 31, 244–254 (1987)

    MATH  MathSciNet  Google Scholar 

  13. Ma, Z.M., Overbeck, L., Röckner, M.: Markov processes associated with semi-Dirichlet forms. Osaka J. Math. 32, 97–119 (1995)

    MATH  MathSciNet  Google Scholar 

  14. Ma, Z.M., Röckner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin Heidelberg New York (1992)

    Google Scholar 

  15. Mokobodzki, G.: Structures des c\(\textrm {\^{o}}\)nes de potentiels. In: Potential Theory (C.I.M.E., Stresa 1969), pp. 207–248. Edizioni Cremonese, Roma (1970)

  16. Mokobodzki, G.: Représentation d’un semi-groupe d’opérateurs sur un espace \(L^1\) par des noyaux. Remarques sur deux articles de S.E. Kuznetsov. In: Sém. de Probab. XXVII (Lecture Notes in Math. 1557), pp. 304–311. Springer, Berlin Heidelberg New York (1993)

  17. Röckner, M., Schmuland, B.: Quasi-regular Dirichlet forms: Examples and counterexamples. Canad. J. Math. 47, 165–200 (1995)

    MATH  MathSciNet  Google Scholar 

  18. Sharpe, M.: General Theory of Markov Processes. Pure Appl. Math. 133. Academic, New York (1988)

  19. Steffens, J.: Excessive measures and the existence of right semigroups and processes. Trans. Amer. Math. Soc. 311, 267–290 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian Beznea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beznea, L., Boboc, N. & Röckner, M. Quasi-regular Dirichlet Forms and \(L^p\)-resolvents on Measurable Spaces. Potential Anal 25, 269–282 (2006). https://doi.org/10.1007/s11118-006-9016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-006-9016-2

Mathematics Subject Classifications (2000)

Key words

Navigation