Skip to main content
Log in

New refractive index profiles of dispersion-flattened highly nonlinear fibers for future all-optical signal processing in wdm optical networks

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate new dissimilar refractive index profiles for highly nonlinear ultra-flattened dispersion fibers with noteworthy effective area \((A_\mathrm{eff})\) for future optical signal processing. The newly proposed fibers named from Type 1 to Type 5 have a flattened dispersion over S, C, L and U bands. Predominantly, few-mode HNL-UFF fiber of Type 3 yields dispersion-flattened characteristics over a range of 250 nm of optical communication spectrum with a mere 0.2 ps/nm km variation in dispersion and a dispersion slope of \(0.0057\hbox { ps}/\hbox {nm}^{2}\) km due to the contribution of higher-order modes to the dispersion characteristics of the fiber. Moreover, it has a moderate nonlinear coefficient of \(8.03\hbox { W}^{-1}\,\hbox {km}^{-1}\). By modifying the refractive index profile of Type 3 fiber, Type 4 and Type 5 fibers are obtained in order to ensure single-mode operation, while the zero flattened dispersion characteristics of the fiber are compromised. Among the newly proposed fibers, Type 4 fiber offers a very low ITU-T cutoff wavelength of \(1.33~\upmu \hbox {m}\), whereas in the case of Type 5 fiber it is \(1.38~\upmu \hbox {m}\). Moreover, Type 4 and Type 5 fibers have good nonlinear coefficients of \(12.26\hbox { W}^{-1}\,\hbox {km}^{-1}\) and \(11.45\hbox { W}^{-1}\,\hbox {km}^{-1}\), respectively. By virtue of the proposed optimized index profile, an insensitive behavior toward bending is displayed by Type 3, Type 4 and Type 5 fibers. In addition, Type 4 fiber provides a better splice loss of 0.25 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. High nonlinear fiber, rayscience optoelectronic innovation. www.oelabs.com/imagesd/goodspdf/201109/High%20Nonlinear%20Optical%20Fibre.dpdf

  2. Selvendran, S., Sivanantharaja, A., Kalaiselvi, K., Esakkimuthu, K.: Simultaneous four channel wavelength conversion of 50 Gbps CSRZ-DPSK WDM signals in S and C bands using HNLF without additional pump signals. Opt. Quantum Electron. (2012). doi:10.1007/s11082-012-9612-x

    Google Scholar 

  3. Verdurmen, E.J.M., Khoe, G.D., Koonen, A.M.J., de Waardt, H.: Comparison of multiplexing techniques using XPM and FWM in HNLF. In: Proceedings of the IEEE/LEOS Benelux Chapter, pp. 185–188. Mons, Belgium (2005)

  4. Feng, X., Shi, J., Ponzo, G. M., Poletti, F., Petrovich, M. N.,White, N. M., Petropoulos, P., Ibsen, M., Loh, W. H., Richardson,D.J.: Fusion-spliced highly nonlinear soft-glass W-type index profiled fiber with ultra-flattened, low dispersion profile in \(1.55 \mu \text{m}\) telecommunication window. In: ECOC, paper We.10.P1.05 (Geneva, 2011)

  5. Li, M.-J., Li, S., Nolan, D.A.: Silica glass based nonlinear optical fibers. In: Proceedings of SPIE 6025, ICO20: Optical Communication, 602503 (28 Jan 2006). doi:10.1117/12.666983

  6. Hiroishi, J., Sugizaki, R., Aso, O., Tadakuma, M., Shibuta, T.: Development of highly nonlinear fibers for optical signal processing. Furukawa Rev. 23, 21–25 (2003)

    Google Scholar 

  7. Oh, K., Paek, U.-C.: Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards, p. 96. Wiley, Hoboken (2012)

    Google Scholar 

  8. Beck, B., Yangtze Optical Fibre And Cable Co. Ltd.: Application-specific optical fibers are cost-effective. Photonics Spectra. 39(12), 23656 (2005). http://www.photonics.com/Article.aspx?AID=23656

  9. Weber, H.G.: Ultrahigh-Speed Optical Transmission Technology. Springer, Berlin (2007). (edition)

  10. Okuno, T., Hirano, M., Nakanishi, T., Onishi, M.: Highly-nonlinear optical fibers and their applications. SEI Tech. Rev. 62, 34–40 (2006). http://www.sei.co.jp/tr_e/pdf/info/62-06.pdf

  11. Makouei, S., KoozehKanani, Z.D.: Zero-dispersion shifted optical fiber design based on ga and cd optimization methods. Progress Electromagn. Res. M 26, 115–126 (2012)

    Article  Google Scholar 

  12. Wei, C., Zhu, X., Norwood, R.A., Song, F., Peyghambarian, N.: Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 \(\mu \)m. Opt. Express 21(24), 29488–29504 (2013)

    Article  Google Scholar 

  13. Chamberlain, G.E., Day, G.W., Franzen, D.L., Gallawa, R.L., Kim, E.M., Young, M.: Optical Fiber Characterization: Attenuation, Frequency Domain Bandwidth, and Radiation Patterns. U.S. Department of Commerce, National Bureau of Standards, p. 225 (1983)

  14. Carnevale, A., Paek, U.-C., Peterson, G.E.: Single Mode Fiber with Graded Index of Refraction. U.S Patent 4,412,722, 1 Nov 1983

  15. Ma, D., Smith, D.K.: Positive Dispersion Low Dispersion Slope Fiber, United States Patent. Pub. No.: US 2001/0001624 A1, 24 May 2001

  16. Kim, J.-K.: Investigation of High-Nonlinearity Glass Fibers for Potential Applications in Ultrafast Nonlinear Fiber Devices. Ph.D. thesis (Virginia Polytechnic Institute and State University, Blacksburg, VA.). http://en.scientificcommons.org/1530271 (2005)

  17. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Cambridge (2007). (Fourth Edition)

  18. Bachmann, Peter: Review of plasma deposition applications: preparation of optical wave guides. Pure Appl. Chem. 57(9), 1299–1310 (1985)

    Article  Google Scholar 

  19. IGIC, Inc.: Staff, Optical Fibers and Applications, Issue 1, Information Gatekeepers Inc, 01. p. 88 (1994)

  20. Lydtin, H.: PCVD: a technique suitable for large-scale fabrication of optical fibers. J. Light. Technol. 8, 1034–1038 (1986)

    Article  Google Scholar 

  21. Cognolat, L.: Chemical vapour deposition for optical fibre technology. J. Phys. IV 5(C5), C5-975–C5-987 (1995). doi:10.1051/jphyscol:19955115

  22. Schuster, K., Unger, S., Aichele, C., Lindner, F.: Grimm, Stephan, Litzkendorf, Doris, Kobelke, Jens, Bierlich, Jörg, Wondraczek, Katrin, Bartelt, Hartmut: Material and technology trends in fiber optics. Adv. Opt. Technol. 3(4), 447–468 (2014)

    Google Scholar 

  23. Yin, S., Chung, K.-W., Liu, H., Kurtz, P., Reichard, K.: A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100 mm2 and low bending and splice loss. Opt. Commun. 177, 225–232 (2000)

    Article  Google Scholar 

  24. Bachmann, P.K., Leers, D., Wehr, H., Wiechert, D.U., Van Steenwijk, J.A., Tjaden, D.L.A.: Dispersion-flattened single-mode fibers prepared with PCVD: performance, limitations, design optimization. J. Light. Technol. Lt–4(7), 858–863 (1986)

  25. Myslivets, E., Radic, S.: Spatially resolved measurements of the chromatic dispersion in fibers. J. Light. Technol. 33(3), 597–608 (2015)

    Article  Google Scholar 

  26. Ramachandran, S.: Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices. J. Light. Technol. 23(11), 3426–3443 (2005)

  27. Feng, X., Poletti, F., Camerlingo, A., Parmigiani, F., Petropoulos, P., Horak, P., Ponzo, G.M., Petrovich, M., Shi, J., Loh, W.H., Richardson, D.J.: Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths. Opt. Fiber Technol. 16(6), 378–391 (2010)

    Article  Google Scholar 

  28. Feng, X., Shi, J., Ponzo, G.M., Poletti, F., Petrovich, M.N., White, N.M. , Petropoulos, P., Ibsen, M., Loh, W.H., Richardson, D.J.: Fusion-spliced highly nonlinear soft-glass W-type index profiled fibre with ultra-flattened, low dispersion profile in 1.55\(\mu \)m telecommunication window. In: European Conference and Exposition on Optical Communications Geneva Switzerland, 18-22 Sept 2011

  29. Shashi, K., Sahu, H.R., Arora, A.: Enhanced bend insensitive high effective area NZDS fiber. In: International Wire and Cable Symposium, Proceedings of the 55th IWCS/Focus

  30. Bruyère, F.: Effets de polarisationdans les systèmes à amplification optique de longuedistance. Ph.D. dissertation, University of Paris XI Orsay (1994)

  31. Miller, S.E., Kaminow, I.P. (eds.): Optical Fiber Telecommunications II. Academic Press Inc, San Diego (1988)

    Google Scholar 

  32. Sakai, J., Kimura, T.: Bending loss of propagation modes in arbitrary-index profile optical fibers. Appl. Opt. 17(10), 1499–1506 (1978)

    Article  Google Scholar 

  33. Ramachandran, S., Ghalmi, S., Nicholson, J.W., Yan, M.F., Wisk, P., Monberg, E., Dimarcello, F.V.: Anomalous dispersion in a solid, silica-based fiber. Opt. Lett. 31(17), 2532–2534 (2006)

Download references

Acknowledgments

The authors thankfully acknowledge the Department of Science and Technology (DST), New Delhi, for their Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (FIST) grant through the order No. SR/FST/College-061/2011(C) to procure the Optiwave suite Simulation tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvendran, S., Raja, A.S. New refractive index profiles of dispersion-flattened highly nonlinear fibers for future all-optical signal processing in wdm optical networks. Photon Netw Commun 33, 217–230 (2017). https://doi.org/10.1007/s11107-016-0635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0635-2

Keywords

Navigation