Skip to main content
Log in

Incorporating Gabriel graph model for FTTx dimensioning

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

For the realistic generation of synthetic street configurations, used in fiber-to-the-x (FTTx) dimensioning, the Gabriel graph model is proposed. Commencing the analysis with the Primal approach for 100 samples of urban street networks, a great heterogeneity is empirically discovered in their structural properties. Due to the observed morphological complexity, the necessity of a fast abstraction model capturing the complex street patterns is justified. The case study supports the sufficiency of Gabriel graphs for the reproduction of the street networks’ basic structural properties such as the average shortest path, the diameter or the average street segment length. The results also demonstrate the sheer superiority of Gabriel graphs for the early estimation of the trenching length of FTTx networks with more than 48 % better accuracy in comparison with the conventional geometric models. Particularly in dense urban areas, the geometric models suffer more serious accuracy shortcomings, whereas the suggested model performs even better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. There also exist aerial-based geometric models for FTTx deployment in the literature [8], i.e., the diagonal tree and the simplified Steiner tree.

  2. Each point representing a Gabriel graph measurement is the averaged outcome of 100 runs simulating a Gabriel graph of a given size.

  3. These “edge effects” are probably the main factor behind the inversely proportional relation between the samples’ surface size and the MAPE referring to the edges/density/average node degree (Tables 1 and 2).

References

  1. Fiber To The Home Council Europe: FTTH Handbook, 6 ed, vol. 6. Fiber To The Home Council Europe (2014)

  2. Rokkas, T., Katsianis, D., Varoutas, D.: Techno-economic evaluation of FTTC/VDSL and FTTH roll-out scenarios: discounted cash flows and real option valuation. J. Opt. Commun. Netw. 2(9), 760–772 (2010)

    Article  Google Scholar 

  3. Monath, T., Elnegaard, N.K., Cadro, P., Katsianis, D., Varoutas, D.: Economics of fixed broadband access network strategies. IEEE Commun. Mag. 41(9), 132–139 (2003)

    Article  Google Scholar 

  4. Casier, K., Verbrugge, S., Meersman, R., Colle, D., Pickavet, M., Demeester, P.: A clear and balanced view on FTTH deployment costs. In: Proceedings of FITCE Congress London, pp. 109–112. UK (2008)

  5. Casier, K., Verbrugge, S., Lannoo, B., Van Ooteghem, J., Demeester, P.: Improving the FTTH business case benefits of an holistic approach. J. Inst. Telecommun. Prof. 5(1), 46–53 (2011)

    Google Scholar 

  6. Ims, L.A.: Chapter 6 in Broadband access networks: introduction strategies and techno-economic evaluation. Telecommunications Technology and Applications Series. Springer, New York (1998)

    Book  Google Scholar 

  7. Olsen, B.T.: OPTIMUM-a techno-economic tool. Telektronikk 95(2/3), 239–250 (1999)

    Google Scholar 

  8. Casier, K.: Techno-economic evaluation of a next generation access network deployment in a competitive setting. PhD Thesis at Faculty of Engineering, Ghent University (2009)

  9. Comsof: FiberPlanIT - FTTx Network Design Tool. http://www.fiberplanit.com/ (2014)

  10. Mitcsenkov, A., Katzenberger, P., Bakos, P., Paksy, G.: Automatic map-based FTTx access network design. In: Proceedings of the 22nd European Regional Conference of the International Telecommunications Society (ITS2011) Budapest, pp. 1–12. Hungary (2011)

  11. Jiang, B., Claramunt, C.: Topological analysis of urban street networks. Environ. Plan. B 31(1), 151–162 (2004)

    Article  Google Scholar 

  12. Cardillo, A., Scellato, S., Latora, V., Porta, S.: Structural properties of planar graphs of urban street patterns. Phys. Rev. E 73(6), 066107 (2006)

    Article  Google Scholar 

  13. Buhl, J., Gautrais, J., Reeves, N., Solé, R., Valverde, S., Kuntz, P., Theraulaz, G.: Topological patterns in street networks of self-organized urban settlements. Eur. Phys. J. B 49(4), 513–522 (2006)

    Article  Google Scholar 

  14. Maniadakis, D., Varoutas, D.: Structural properties of urban street networks of varying population density. In: Proceedings of the 10th European Conference on Complex Systems (ECCS’13) Barcelona, pp. 1–6. Spain (2013)

  15. Levinson, D.: Network structure and city size. PLoS one 7(1), e29721 (2012)

    Article  MathSciNet  Google Scholar 

  16. Levinson, D.: Density and dispersion: the co-development of land use and rail in London. J. Econ. Geogr. 8(1), 55–77 (2008)

    Article  MathSciNet  Google Scholar 

  17. Mitcsenkov, A., Kantor, M., Casier, K., Lannoo, B., Wajda, K., Chen, J., Wosinska, L.: Geographic model for cost estimation of FTTH deployment: overcoming inaccuracy in uneven-populated areas. In: Proceedings of the Asia Communications and Photonics Conference and Exhibition (ACP) Shanghai, pp. 397–398. China (2010)

  18. Mitcsenkov, A., Kantor, M., Casier, K., Lannoo, B., Wajda, K., Chen, J., Wosinska, L.: Geometric versus geographic models for the estimation of an FTTH deployment. Telecommun. Syst. 54(2), 113–127 (2013)

    Article  Google Scholar 

  19. Maniadakis, D., Varoutas, D.: Structural properties of urban street networks for FTTH deployment. In: Proceedings of the 11th Conference of Telecommunication, Media and Internet Techno-Economics (CTTE 2012) Athens, pp. 1–8. Greece (2012)

  20. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a primal approach. Environ. Plan. 33, 705–725 (2006)

    Article  Google Scholar 

  21. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969)

    Google Scholar 

  22. Mitcsenkov, A., Paksy, G., Cinkler, T.: Geography-and infrastructure-aware topology design methodology for broadband access networks (FTTx). Photonic Netw. Commun. 21(3), 253–266 (2011)

    Article  Google Scholar 

  23. RACE R1044 project (Integrated broadband communications development and implementation strategies). In: (1989–1991)

  24. RACE 2087/TITAN project (Tool for Introduction strategies and Techno-economic evaluation of Access Network). In: (1992–1996)

  25. AC226/OPTIMUM project (OPTImized network architectures for MUltiMedia services). In: (1996–1998)

  26. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1), 1–101 (2011)

    Article  MathSciNet  Google Scholar 

  27. Çetinkaya, E.K., Alenazi, M.J., Cheng, Y., Peck, A.M., Sterbenz, J.P.: On the fitness of geographic graph generators for modelling physical level topologies. In: Proceeding of the 5th IEEE/IFIP International Workshop on Reliable Networks Design and Modeling (RNDM’13) Almaty, pp. 1–8. Kazakhstan (2013)

  28. Miletić, V., Maniadakis, D., Mikac, B., Varoutas, D.: On the Influence of the Underlying Network Topology on Optical Telecommunication Network Availability under Shared Risk Link Group Failures. In: Proccedings of the 10th International Conference on Design of Reliable Communication Networks (DRCN 2014) Gent, pp. 1–8. Belgium (2014)

  29. Osaragi, T., Hiraga, Y.: Street network created by proximity graphs: Its topological structure and travel efficiency. In: Proceedings of the International Conference on Geographic Information Science (AGILE’2014), Castellón, pp. 1–6. Spain (2014)

  30. Gloaguen, C., Voss, F., Schmidt, V.: Parametric distributions of connection lengths for the efficient analysis of fixed access networks. Ann. Telecommun. Ann. des Télécommun. 66(1–2), 103–118 (2011)

    Article  Google Scholar 

  31. Gloaguen, C., Coupé, P., Maier, R., Schmidt, V.: Stochastic modelling of urban access networks. In: Proceedings of the 10th International Telecommunication Network Strategy Planning Symposium Munich, pp. 99–104. Germany (2002)

  32. Masucci, A., Smith, D., Crooks, A., Batty, M.: Random planar graphs and the London street network. Eur. Phys. J. B 71(2), 259–271 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Barthélemy, M., Flammini, A.: Co-evolution of density and topology in a simple model of city formation. Netw. Spat. Econ. 9(3), 401–425 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Agata, A., Nishimura, K.: Suboptimal PON network designing algorithm for minimizing deployment cost of optical fiber cables. In: Proceedings of the 16th International Conference on Optical Network Design and Modeling (ONDM) Colchester, pp. 1–6. UK (2012)

  35. Hellenic Statistical Authority: Population census. In: (2001)

  36. OpenStreetMap: Street data. http://www.openstreetmap.org (2012–2013)

  37. Hillier, B., Iida, S.: Network and psychological effects in urban movement. In: Spatial information theory. pp. 475–490. Springer (2005)

  38. Figueiredo, L., Amorim, L.: Continuity lines in the axial system. In: Proceedings of the Fifth Space Syntax International Symposium Delft, pp. 162–174. The Netherlands (2005)

  39. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a dual approach. Phys. A 369(2), 853–866 (2006)

    Article  Google Scholar 

  40. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Peponis, J., Allen, D., Haynie, D., Scoppa, M., Zhang, Z.: Measuring the configuration of street networks. In: Proceedings of the 6th International Space Syntax Symposium Istanbul, pp. 1–16. Turkey (2007)

  42. Chan, S.H., Donner, R.V., Lämmer, S.: Urban road networks–spatial networks with universal geometric features? Eur. Phys. J. B Condens. Matter Complex Syst. 84(4), 563–577 (2011)

    Article  Google Scholar 

  43. Strano, E., Nicosia, V., Latora, V., Porta, S., Barthélemy, M.: Elementary processes governing the evolution of road networks. Sci. Rep. 2, 1–8 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the two anonymous referees for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Maniadakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maniadakis, D., Varoutas, D. Incorporating Gabriel graph model for FTTx dimensioning. Photon Netw Commun 29, 214–226 (2015). https://doi.org/10.1007/s11107-015-0485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0485-3

Keywords

Navigation