Skip to main content
Log in

Provisioning of dynamic traffic in mixed-line-rate optical networks with launch power determination

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In mixed-line-rate (MLR) networks, different line rates on different wavelengths can coexist on the same fiber. MLR architectures can be built over transparent optical networks, where the transmitted signals remain in the optical domain along the entire path. Along the transparent optical path, a signal experiences various physical layer impairments (PLIs), and its quality degrades as it travels through each optical component. One of the major factors that affect the transmission quality is the launch power of the optical signal. The power must be large enough to ensure noise resiliency at the receiver, but it must be below the limit where fiber nonlinearities distort the signal. Moreover, high launch power is disruptive not only for the actual lightpath itself but also for neighboring lightpaths, and this effect is particularly critical in MLR networks since advanced modulation techniques used for high line rates are highly susceptible to PLIs. In this study, we investigate the problem of determining the appropriate launch power for provisioning of dynamic connection requests in MLR networks. By setting the appropriate launch power for each connection, we aim to maximize the number of established connections. We propose two different heuristics to determine the appropriate launch power of a lightpath. Worst-case best-case average (WBA) is based on optical reach of signal in a transparent optical network. In impairment-aware launch power determination (I-ALPD), current state of the network and impairments are evaluated to determine the launch power. The proposed approaches are practical and can adapt to the needs of network operators. Simulation results show that the performances of the proposed approaches show better results than the existing schemes in terms of blocking probability and bandwidth blocking ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In a transparent optical WDM network, transmitted signals remain in the optical domain along the entire path; thus, electronic signal processing is not needed at intermediate nodes.

  2. Translucent networks employ signal regenerators at some nodes along the path [1].

  3. Reach is the distance an optical signal can travel before the signal quality degrades to a level that necessitates regeneration [6].

  4. The discount given to a customer who buys a large quantity of goods.

  5. SP-FF chooses the first available wavelength on shortest-path.

References

  1. Mukherjee, B.: Optical WDM Networks. Springer, Berlin (2006)

    Google Scholar 

  2. Ramaswami, R., Sivarajan, K.N., Sasaki, G.H.: Optical Networks: A Practical Perspective. Elsevier, Amsterdam (2010)

    Google Scholar 

  3. Bononi, A., Bertolini, M., Serena, P., Bellotti, G.: Cross-phase modulation induced by OOK channels on higher-rate DQPSK and coherent QPSK channels. IEEE/OSA J. Lightwave Technol. 27, 3974–3983 (2009)

    Article  Google Scholar 

  4. Alfiad, M.S., Kuschnerov, M., Wuth, T., Xia, T.J., Wellbrock, G., Schmidt, E., van den Borne, D., Spinnler, B., Weiske, C.J., de Man, E., Napoli, A., Finkenzeller, M., Spaelter, S., Rehman, M., Behel, J., Chbat, M., Stachowiak, J., Peterson, D., Lee, W., Pollock, M., Basch, B., Chen, D., Freiberger, M., Lankl, B., de Waardt, H.: 111 Gb/s Transmission over 1040 km field-deployed fiber with 10G/40G neighbors. IEEE Photon. Technol. Lett. 21, 615–617 (2009)

    Article  Google Scholar 

  5. Azodolmolky, S., Klonidis, D., Tomkos, I., Yabin, Y., Saradhi, C., Salvadori, E., Gunkel, M., Telekom, D., Manousakis, K., Vlachos, K., Varvarigos, E., Nejabati, R., Simeonidou, D., Eiselt, M., Comellas, J., Sole-Pareta, J., Simonneau, C., Bayart, D., Staessens, D., Colle, D., Pickavet, M.: A dynamic impairment-aware networking solution for transparent mesh optical networks. IEEE Commun. Mag 47, 38–47 (2009)

    Article  Google Scholar 

  6. Simmons, J.M.: On determining the optimal optical reach for long haul network. IEEE/OSA J. Lightwave Technol. 23, 1039–1048 (2005)

    Article  Google Scholar 

  7. Sambo, N., Secondini, M., Cugini, F., Bottari, G., Iovanna, P., Cavaliere, F., Castoldi, P.: Enforcing QoT via PCE in multi bit-rate WSONs. IEEE Commun. Lett. 15, 452–454 (2011)

    Article  Google Scholar 

  8. Paolucci, F., Sambo, N., Cugini, F., Giorgetti, A., Castoldi, P.: Experimental demonstration of impairment-aware PCE for multi-bit-rate WSONs. IEEE/OSA J. Opt. Commun. Netw. 3, 610–619 (2011)

    Article  Google Scholar 

  9. Wang, X., Brandt-Pearce, M., Subramaniam, S.: Grooming and RWA in translucent dynamic mixed-line-rate WDM networks with impairments. In: Proceedings of OFC (2012)

  10. Cukurtepe, H., Yayimli, A., Mukherjee, B.: Inverse multiplexing gain considering physical layer impairments in mixed line rate networks. In: Proceedings of ISCC, Cappadocia, Turkey (2012)

  11. Cukurtepe, H.,Tornatore, M., Yayimli, A., Mukherjee, B.: Impairment-aware lightpath provisioning in mixed line rate networks. In: Proceedings of IEEE ANTS’12, Bengalore, India (2012)

  12. Cukurtepe, H., Yayimli, A., Mukherjee, B.: Impairment-aware lightpath provisioning using inverse multiplexing in mixed-line-rate networks. Opt. Switch. Netw. 11, 44–52 (2014)

    Article  Google Scholar 

  13. Deng, T., Subramaniam, S.: Source power management in transparent wavelength-routed mesh networks. In: Proceedings of ICC (2004)

  14. Coelho, L., Gaete, O., Schmidt, E., Spinnler, B., Hanik, N.: Global optimization of RZ-DPSK and RZ-DQPSK systems at various data rates. In: Proceedings of OFC (2009)

  15. Nag, A., Tornatore, M., Mukherjee, B.: Power management in mixed line rate optical networks. In: Proceedings of Photonics in Switching (PS), Monterey, CA, US (2010)

  16. Gao, G., Zhang, J., Gu, W., Feng, Z., Te, Y.: Dynamic power control for mixed line rate transparent wavelength switched optical networks. In: Proceedings of ECOC, Torino, Italy (2010)

  17. Coiro, A., Listanti, M., Valenti, A., Matera, F.: Power-aware routing and wavelength assignment in multi-fiber optical networks. IEEE/OSA J. Opt. Commun. Netw. 3, 816–829 (2011)

    Article  Google Scholar 

  18. Chomycz, B.: Planning Fiber Optic Networks. McGraw-Hill, New York (2009)

    Google Scholar 

  19. Ramamurthy, B., Datta, D., Feng, H., Heritage, J., Mukherjee, B.: Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks. IEEE/OSA J. Lightwave Technol. 17, 1713–1723 (1999)

    Article  Google Scholar 

  20. Cantrell, C.D.: Transparent optical metropolitan-area networks. In: Proceedings of IEEE LEOS 16th Annual Meeting (2003)

  21. Sambo, N., Secondini, M., Cugini, F., Bottari, G., Iovanna, P., Cavaliere, F., Castoldi, P.: Modeling and distributed provisioning in 10–40-100-Gb/s multi-rate wavelength switched optical networks. IEEE/OSA J. Lightwave Technol. 29, 1248–1257 (2011)

    Article  Google Scholar 

  22. Agrawal, G.: Fiber-Optic Communication Systems. Wiley, London (2010)

    Book  Google Scholar 

  23. Yuki, M., Hoshida, T., Tanimura, T., Oda, S., Nakamura, K., Vassilieva, O., Wang, X. Nakashima, H., Ishikawa, G., Rasmussen, J.C.: Transmission characteristics of (43 Gb/s) single-polarization and dual-polarization (RZ-DQPSK signals with co-propagating (11.1 Gb/s) NRZ channels over (NZ-DSF). In: Proceedings of OFC (2008)

  24. Furst, C., Elbers, J., Wernz, H., Grisser, H., Herbst, S., Camera, M., Cavaliere, F., Ehrhardt, A., Breuer, D., Fritchze, D., Vorbeck, S., Schneiders, M. Weiershausen, W., Leppla, R., Wendler, J., Schrodel, M., Wuth, T., Fludger, C. Duthel, T., Milivojevic, B., Schulien, C.: Analysis of crosstalk in mixed 43 Gb/s RZ-DQPSK and 10.7 Gb/s DWDM systems at 50 GHz channel spacing. In: Proceedings of OFC (2007)

  25. Griesser, H., Elbers, J.: Influence of cross-phase modulation induced nonlinear phase noise on DQPSK signals from neighbouring OOK channels. In: Proceedings of ECOC, vol. 2 (2005)

  26. Xia, T.J., Wellbrock, G., Peterson, D., Lee, W., Pollock, M., Basch, B., Chen, D., Freiberger, M., Alfiad, M., de Waardt, H., Kuschnerov, M., Lankl, B., Wuth, T., Schmidt, E., Spinnler, B., Weiske, C., de Man, E., Xie, C., van den Borne, D., Finkenzeller, M., Spaelter, S., Derksen, R., Rehman, M., Behel, J., Stachowiak, J., Chbat, M.: Multi-rate (111-Gb/s, 2\(\,\times\,\)43-Gb/s, and 8\(\times \)10.7-Gb/s) transmission at 50-GHz channel spacing over 1040-km field-deployed fiber. In: Proceedings of ECOC, Brussels, Belgium (2008)

  27. Chan, K., Yum, T.P.: Analysis of least congested path routing in WDM lightwave networks. In: Proceedings of IEEE INFOCOM ’94, vol. 2, pp. 962–969 (1994)

  28. Yen, J.Y.: Finding the k shortest loopless paths in a network. Manag. Sci. 17, 712–716 (1971)

    Article  MATH  Google Scholar 

  29. Ou, C., Mukherjee, B.: Survivable Optical WDM Networks. Kluwer, Dordrecht (2003)

Download references

Acknowledgments

This study is partly supported by The Scientific and Technology Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haydar Cukurtepe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cukurtepe, H., Tornatore, M., Yayimli, A. et al. Provisioning of dynamic traffic in mixed-line-rate optical networks with launch power determination. Photon Netw Commun 27, 154–166 (2014). https://doi.org/10.1007/s11107-014-0435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-014-0435-5

Keywords

Navigation