Skip to main content
Log in

Interaction of Components in Cu–Fe Glass-Forming Melts with Titanium, Zirconium, and Hafnium. I. Calorimetric Study of Mixing Enthalpies

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The partial mixing enthalpies of titanium, zirconium, and hafnium with liquid copper and iron alloys are studied by high-temperature calorimetry. The studies are carried out at a temperature of 1873 K along the sections with constant ratios x Cu/x Fe = 3, 1, and 1/3. Along all the studied sections, these functions are negative. The integral mixing enthalpies of components in the Cu–Fe–(Ti, Zr, Hf) systems along the studied sections are calculated by integrating the Gibbs–Duhem equation. The ΔH functions for ternary Cu–Fe–(Ti, Zr, Hf) melts are characterized by positive values in the vicinity of the binary Cu–Fe system and show negative values in a range of compositions with x Me > 0.1 (Me = = Ti, Zr, Hf).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. B. J. Park, H. J. Chang, D. H. Kim, et al., “Phase separating bulk metallic glass: a hierarchical composite,” Phys. Rev. Lett., 96, No. 24, 245503-1–245503-4 (2006).

    Article  Google Scholar 

  2. H. J. Chang, W. Yook, E. S. Park, et al., “Synthesis of metallic glass composites using phase separation phenomena,” Acta Mater., 58, No. 7, 2483–2491 (2010).

    Article  Google Scholar 

  3. N. Mattern, T. Gemming, J. Thomas, et al., “Phase separation in Ni–Nb–Y metallic glasses,” J. Alloys Compd., 495, No. 2, 299–304 (2010).

    Article  Google Scholar 

  4. S. W. Sohn, W. Yook, W. T. Kim, et al., “Phase separation in bulk-type Gd–Zr–Al–Ni metallic glass,” Intermetallics, 23, 57–62 (2012).

    Article  Google Scholar 

  5. J. Pan, L. Liu, and K. C. Chan, “Enhanced plasticity by phase separation in CuZrAl bulk metallic glass with micro-addition of Fe,” Scr. Mater., 60, No. 9, 822–825 (2009).

    Article  Google Scholar 

  6. D. V. Louzguine-Luzgin, G. Xie, Q. Zhang, et al., “Effect of Fe on the glass-forming ability, structure and devitrification behavior of Zr–Cu–Al bulk glass-forming alloys,” Philos. Mag., 90, No. 14, 1955–1968 (2010).

    Article  Google Scholar 

  7. J. Pan, K. C. Chan, Q. Chen, et al., “The effect of microalloying on mechanical properties in CuZrAl bulk metallic glass,” J. Alloys Compd., 504, S74–S77 (2010).

    Article  Google Scholar 

  8. T. Nagase, A. Yokoyama, and Y. Umakoshi, “Multi-scale crystalline Cu globule dispersed Fe-based metallic glass formation by multi-step liquid phase separation,” J. Alloys Compd., 494, No. 1, 295–300 (2010).

    Article  Google Scholar 

  9. D. H. Kim, W. T. Kim, E. S. Park, et al., “Phase separation in metallic glasses,” Prog. Mater. Sci., 58, No. 8, 1103–1172 (2013).

    Article  Google Scholar 

  10. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamic assessment of the Cu–Ti–Zr system. I. Cu–Ti system,” Powder Metall. Met. Ceram., 47, No. 5–6, 344–360 (2008).

    Article  Google Scholar 

  11. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamic assessment of the Cu–Ti–Zr system. II. Cu–Zr and Ti–Zr systems,” Powder Metall. Met. Ceram., 47, No. 7–8, 428–446 (2008).

    Article  Google Scholar 

  12. M. A. Turchanin and P. G. Agraval, “Thermodynamic assessment of the copper–hafnium system,” Powder Metall. Met. Ceram., 47, No. 3–4, 223–233 (2008).

    Article  Google Scholar 

  13. M. A. Turchanin, A. R. Abdulov, P. G. Agraval, et al., “Thermodynamic functions of mixing for Fe–Ti melts,” Russian Metallurgy (Metally), No. 5, 370–376 (2008).

  14. P. G. Agraval, L. A. Dreval, and M. A. Turchanin, “Thermodynamic properties of iron melts with titanium, zirconium, and hafnium,” Powder Metall. Met. Ceram., 55, No. 11–12, 707–716 (2017).

    Article  Google Scholar 

  15. Y. Nakagawa, “Liquid immiscibility in copper–iron and copper–cobalt systems in the supercooled state,” Acta Metall., 6, No. 11, 704–711 (1958).

    Article  Google Scholar 

  16. S. P. Elder, A. Munitz, and G. J. Abbashian, “Metastable liquid immiscibility in iron–copper and cobalt–copper alloys,” Mater. Sci. Forum, 50, 137–150 (1989).

    Article  Google Scholar 

  17. G. Wilde, R. Willnecker, R.-N. Singh, et al., “The metastable miscibility gap in the system Fe–Cu,” Z. Metallkd., 88, No. 10, 804–809 (1997).

    Google Scholar 

  18. S.-E. Amara, A. Belhadj, R. Kesri, et al., “Stable and metastable equilibria in the binary Fe–Cu and ternary Fe–Cu–C systems,” Z. Metallkd., 90, No. 2, 116–123 (1999).

    Google Scholar 

  19. R. A. Dunlap, G. Stroink, Z. M. Stadnik, et al., “Properties of as-quenched and hydrogenated copper–iron–titanium alloys,” Mater. Sci. Eng., 99, 543–546 (1988).

    Article  Google Scholar 

  20. T. L. Wang and B. X. Liu, “Glass forming ability of the Fe–Zr–Cu system studied by thermodynamic calculation and ion beam mixing,” J. Alloys Compd., 481, 156–160 (2009).

    Article  Google Scholar 

  21. L. Ma, L. Wang, T. Zhang, et al., “Bulk glass formation of Ti–Zr–Hf–Cu–M (M = Fe, Co, Ni) alloys,” Mater. Trans., 43, No. 2, 277–280 (2002).

    Article  Google Scholar 

  22. K. Jin and J. F. Löffler, “Bulk metallic glass formation in Zr–Cu–Fe–Al alloys,” Appl. Phys. Lett., 86, 241909-1–241909-3 (2005).

    Google Scholar 

  23. M. A. Turchanin and I. V. Nikolaenko, “Enthalpies of formation of liquid (copper + manganese) alloys,” Metall. Mater. Trans. B, 28, No. 3, 473–478 (1997).

    Article  Google Scholar 

  24. P. Agraval, L. Dreval, M. Turchanin, et al., “Enthalpy of mixing of liquid Ni–Ti–Zr alloys at 1873 K,” J. Chem. Thermodyn., 106, 309–316 (2017).

    Article  Google Scholar 

  25. M. A. Turchanin, P. G. Agraval, A. N. Fesenko, and A. R. Abdulov, “Thermodynamics of liquid alloys and metastable phase transformations in the copper–titanium system,” Powder Metall. Met. Ceram., 44, No. 5–6, 259–270 (2005).

    Article  Google Scholar 

  26. A. A. Turchanin, I. A. Tomilin, M. A. Turchanin, et al., “Enthalpies of formation of liquid and amorphous Zr–Cu alloys,” J. Non-Cryst. Solids, 250–252, 582–585 (1999).

    Article  Google Scholar 

  27. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamics of liquid alloys of iron with zirconium,” Rasplavy, No. 6, 25–29 (2006).

  28. P. G. Agraval, L. A. Dreval, and M. A. Turchanin, “Enthalpy of mixing of hafnium in liquid iron by high-temperature calorimetry,” J. Alloys Compd., 604, 273–275 (2014).

    Article  Google Scholar 

  29. M. A. Turchanin and P. G. Agraval, “Thermodynamics of liquid alloys, and stable and metastable phase equilibria in the copper–iron system,” Powder Metall. Met. Ceram., 40, No. 7–8, 337–353 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Agraval.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 56, Nos. 3–4 (514), pp. 143–153, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agraval, P.G., Dreval, L.A. & Turchanin, M.A. Interaction of Components in Cu–Fe Glass-Forming Melts with Titanium, Zirconium, and Hafnium. I. Calorimetric Study of Mixing Enthalpies. Powder Metall Met Ceram 56, 231–238 (2017). https://doi.org/10.1007/s11106-017-9890-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9890-8

Keywords

Navigation