Skip to main content
Log in

Thermodynamic Properties of Iron Melts with Titanium, Zirconium, and Hafnium

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The literature data on the enthalpies of mixing and thermodynamic activities of Fe–Ti, Fe–Zr, and Fe–Hf liquid alloys are summarized. It is shown that the thermodynamic properties of these systems are characterized by significant negative deviations from the ideal behavior. In the framework of the associated solution model, the composition and temperature dependences of the thermodynamic functions of mixing for the Fe–Ti, Fe–Zr, and Fe–Hf systems are described. The temperature dependence of the thermodynamic properties of the considered systems is characterized by increase in negative deviations from the ideality with decreasing temperature and increasing thermodynamic stability of supercooled melts. Analysis of the degree of short-range order in the system melts, estimated as the total mole fraction of associates Σxass at the glass transition temperature, allows us to successfully interpret the known composition ranges of glass transition for the Fe–Zr and Fe–Hf melts and predict the composition range of glass transition for the Fe–Ti melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. D. H. Ryan, J. M. D. Coey, and J. O. Ström-Olsen, “Magnetic properties of iron-rich Fe–Hf glasses,” J. Magn. Magn. Mater., 67, No. 2, 148–154 (1987).

    Article  Google Scholar 

  2. H. U. Krebs, “Comparison of sputtered, solid-state-reacted and melt-spun Zr–Fe alloys,” J. Less-Common Met., 145, 97–103 (1988).

    Article  Google Scholar 

  3. F. S. Li, Y. S. Go, X. R. Chang, et al., “Structure, properties, and thermal stability of nanocrystallite Fe–Ti–N soft magnetic films,” IEEE Trans. Magn., 39, No. 6, 3554–3558 (2003).

    Article  Google Scholar 

  4. D. V. Louzguine, H. Kato, L. V. Louzguina, et al., “High-strength binary Ti–Fe bulk alloys with enhanced ductility,” J. Mater. Res., 19, No. 12, 3600–3606 (2004).

    Article  Google Scholar 

  5. Yu. O. Esin, M. G. Valishev, A. F. Ermakov, et al., “Partial and integral enthalpies of forming liquid alloys of titanium and iron,” Izv. Akad. Nauk SSSR. Met., No. 3, 30–32 (1981).

  6. G. I. Batalin, V. P. Kurach, and V. S. Sudavtsova, “Enthalpies of mixing for liquid alloys in the Fe–Cr and Fe–Ti systems,” Zh. Fiz. Khim., 58, No. 2, 481–483 (1984).

    Google Scholar 

  7. H. Wang, R. Lueck, and B. Predel, “Calorimetric determination of the mixing enthalpy of iron–titanium liquid alloys,” Z. Metallkd., 82, No. 8, 659–665 (1991).

    Google Scholar 

  8. U. Thiedemann, J. Qin, K. Schaefers, et al., “Mixing enthalpy measurements of liquid Fe–Ti alloys by levitation alloying calorimetry and calculation of the thermodynamic properties of mixing,” ISIJ Int., 35, No. 12, 1518–1522 (1995).

    Article  Google Scholar 

  9. M. A. Turchanin, A. R. Abdulov, P. G. Agraval, et al., “Study of the thermodynamic functions of mixing in the Fe–Ti melts,” Metally, No. 5, 15–22 (2008).

  10. T. Furukawa and E. Kato, “Thermodynamic properties of liquid iron–titanium alloys by mass spectrometry,” Trans. Iron Steel Inst. Jpn., 61, No. 15, 3060–3068 (1975).

    Article  Google Scholar 

  11. V. S. Sudavtsova, V. P. Kurach, and G. I. Batalin, “Thermochemical properties of liquid Fe–(Y, Zr, Nb, Mo) binary alloys,” Metally, No. 3, 60 (1987).

  12. O. Yu. Sidorov, Yu. O. Esin, and P. V. Geld, “Partial and integral enthalpies of forming liquid alloys of zirconium with nickel,” Rasplavy, No. 3, 9–11 (1988).

  13. M. Roesner-Kuhn, J. Qin, and T. Schaefers, “Temperature dependence of the mixing enthalpy and excess heat capacity in the liquid system iron–zirconium,” Z. Metallkd., 86, No. 10, 682–685 (1995).

    Google Scholar 

  14. H. Wang and R. Lueck, “Mixing enthalpy of liquid T–Ti–Zr (T = Fe, Co, Ni) alloys,” J. Non-Cryst. Solids, 205, 417–420 (1996).

    Article  Google Scholar 

  15. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamics of liquid alloys of iron and zirconium,” Rasplavy, No. 6, 25–29 (2006).

  16. S. Chatain, B. Larousse, C. Maillault, et al., “Thermodynamic activity measurements of iron in Fe–Zr alloys by high temperature mass spectrometry,” J. Alloys Compd., 457, No. 1, 157–163 (2008).

    Article  Google Scholar 

  17. P. G. Agraval, L. A. Dreval, and M. A. Turchanin, “Enthalpy of mixing of hafnium in liquid iron by high-temperature calorimetry,” J. Alloys Compd., 604, 273–275 (2014).

    Article  Google Scholar 

  18. T. B. Massalski, H. Okamoto, P. R. Subramanian, et al. (eds.), Binary Alloy Phase Diagrams, 2nd ed., in 3 vols., ASM International, Metals Park, Ohio (1986), p. 3589.

  19. M. A. Turchanin, I. V. Belokonenko, and P. G. Agraval, “On applying the theory of ideal associated solution for assessing the temperature–composition dependence of the thermodynamic properties of binary alloys,” Rasplavy, No. 1, 58–69 (2001).

  20. M. A. Turchanin and P. G. Agraval, “Modelling the temperature–composition dependence of excess thermodynamic properties of melts with strong interaction between components,” in: Physical Chemistry of Condensed Systems and Interfaces: Collected Scientific Papers [in Ukrainian], Kyiv University Publishing Center, Kyiv (2003), pp. 58–65.

  21. M. A. Turchanin, I. V. Belokonenko, P. G. Agraval, et al., “Enthalpies of formation of liquid binary Co + (Ti, Zr, and Hf) alloys,” in: Progress in Computing of Physicochemical Properties, Warszawa (1999), pp. 361–369.

  22. A. A. Turchanin, M. A. Turchanin, and P. G. Agraval, “Thermodynamics of undercooled liquid and amorphous binary metallic alloys,” Metastable Nanocryst. Mater., 10, 481–486 (2001).

    Article  Google Scholar 

  23. M. A. Turchanin, I. V. Belokonenko, and P. G. Agraval, “Heat of forming liquid nickel alloys with group IVA metals,” Rasplavy, No. 3, 53–60 (2001).

  24. M. A. Turchanin, “Calorimetric research on the heat of formation of liquid alloys of copper with group IIIA and group IVA metals,” Powder Metall. Met. Ceram., 36, Nos. 5–6, 253–263 (1997).

    Article  Google Scholar 

  25. M. A. Turchanin, P. G. Agraval, A. N. Fesenko, et al., “Thermodynamics of liquid alloys and metastable phase transformations in the copper–titanium system,” Powder Metall. Met. Ceram., 44, Nos. 5–6, 259–270 (2005).

    Article  Google Scholar 

  26. M. A. Turchanin, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. VII. Concentration–temperature dependences of the thermodynamic functions of mixing for liquid alloys of copper and transition metals,” Powder Metall. Met. Ceram., 46, Nos. 11–12, 565–581 (2007).

    Article  Google Scholar 

  27. M. A. Turchanin and P. G. Agraval, “Thermodynamic assessment of the copper–hafnium system,” Powder Metall. Met. Ceram., 47, Nos. 3–4, 223–233 (2008).

  28. M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamic assessment of the Cu–Ti–Zr system. II. Cu–Zr and Ti–Zr systems,” Powder Metall. Met. Ceram., 47, Nos. 7–8, 428–446 (2008).

    Article  Google Scholar 

  29. M. A. Turchanin, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. I. The copper–scandium system,” Powder Metall. Met. Ceram., 45, Nos. 3–4, 143–152 (2006).

    Article  Google Scholar 

  30. M. A. Turchanin, “Temperature–composition dependence of thermodynamic mixing functions of liquid alloys of copper with rare-earth metals,” Powder Metall. Met. Ceram., Nos. 7–8, 512–527 (2011).

  31. M. A. Turchanin and P. G. Agraval, “Enthalpies of mixing for liquid alloys of titanium, zirconium, and hafnium with cobalt,” Rasplavy, No. 2, 8–16 (2002).

  32. K. H. J. Buschow, “Short-range order and thermal stability in amorphous alloys,” J. Phys. F: Met. Phys., 14, No. 3, 593–608 (1984).

    Article  Google Scholar 

  33. Z. Altounian, E. Batalla, and J. O. Strom-Olsen, “Crystallization characteristics of late transition metal–Zr glasses around the composition M90Zr10,” J. Appl. Phys., 59, No. 7, 2364–2367 (1986).

    Article  Google Scholar 

  34. K. H. J. Buschow and N. M. Beekmans, “Note on the formation, crystallization and electrical resistivity of amorphous hafnium–iron alloys,” J. Less-Common Met., 72, No. 1, 141–145 (1980).

    Article  Google Scholar 

  35. I. W. Donald and H. A. Davies, “Prediction of glass-forming ability for metallic systems,” J. Non-Cryst. Solids, 30, No. 1, 77–85 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Agraval.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 55, Nos. 11–12 (512), pp. 93–104, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agraval, P.G., Dreval, L.A. & Turchanin, M.A. Thermodynamic Properties of Iron Melts with Titanium, Zirconium, and Hafnium. Powder Metall Met Ceram 55, 707–716 (2017). https://doi.org/10.1007/s11106-017-9858-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9858-8

Keywords

Navigation