Skip to main content
Log in

Comparative Characterization of Ribosomal DNA Regions in Different Agave Accessions with Economical Importance

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Two ribosomal DNA regions (5S and 18S) were characterized in three economically important species of Agave Linnaeus, 1753 namely Agave tequilana Weber, 1902; Agave angustifolia Haworth, 1915; and Agave fourcroydes Lemaire, 1864 which are used to produce several products such as tequila, mezcal, and hard fibers. Characterization included Agave L. accessions with different ploidy levels (2n = 2x = 60 to 2n = 6 × = 180) in order to relate this factor with copy number, haplotype number, expression profile, and predictable functionality of ribosomal DNA (rDNA) sequences. Only total rDNA copy number (5S and 18S) was related with ploidy level. Main differences were found in the 5S rDNA gene since it exhibited different genetic traits of Agave L. accession. In this gene, four different allelic groups (I, 105; II, 107; III, 110; and IV, 111 bp) were detected, which have probably evolved separately, thus exhibiting different expression profiles and different haplotype occurrence. Allelic groups III and IV exhibit the highest number of total and expressed copies in all Agave L. accessions. Non-redundant haplotypes were probably more functional in these allelic groups. Differences between the Agave L. accessions were more clearly observed in the most cultivated accession, A. tequilana (2n = 2 × = 60), where the allelic group III shows non-redundant haplotypes and is transcriptionally upregulated suggesting a different evolutionary pressure on this Agave L. accession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci U S A 77:7323–7327. doi:10.1073/pnas.77.12.7323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218. doi:10.1007/bf02672069

    Article  CAS  Google Scholar 

  • Bailey DC, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol 29:435–455. doi:10.1016/j.ympev.2003.08.021

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82:247–277. doi:10.2307/2399880

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. doi:10.1093/oxfordjournals.molbev.a026036

    Article  PubMed  CAS  Google Scholar 

  • Barba-Gonzalez R, Gomez-Rodriguez V, Rodriguez-Garay B, Palomino G, Martínez J (2013) Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae). Comp Cytogenet 7(3):191–203. doi:10.3897/compcytogen.v7i3.5337

    Article  PubMed  PubMed Central  Google Scholar 

  • Barciszewska MZ, Szymański M, Erdmann VA, Barciszewski J (2000) 5S Ribosomal RNA. Biomacromolecules 1:297–302. doi:10.1021/bm000293o

    Article  PubMed  CAS  Google Scholar 

  • Becerra JX (2003) Evolution of Mexican Bursera (Burseraceae) inferred from ITS, ETS, and 5S nuclear ribosomal DNA sequences. Mol Phylogenet Evol 26:300–3009. doi:10.1016/S1055-7903(02)00256-7

    Article  PubMed  CAS  Google Scholar 

  • Bottley A, Xia GM, Koebner RMD (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906. doi:10.1111/j.1365-313X.2006.02841.x

    Article  PubMed  CAS  Google Scholar 

  • Brandham PE (1969) Inversion heterozygosity and sub-chromatid exchange in Agave stricta. Chromosoma 26:270–286. doi:10.1007/BF00326522

    Article  Google Scholar 

  • Buckler ES, Ippolito A, Holtsford TP (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145:821–832

    PubMed  CAS  Google Scholar 

  • Campo D, Machado-Schiaffino G, Horreo JL, Garcia-Vazquez E (2009) Molecular organization and evolution of 5S rDNA in the genus Merluccius and their phylogenic implications. J Mol Evol 68:208–216. doi:10.1007/s00239-009-9207-8

    Article  PubMed  CAS  Google Scholar 

  • Castorena-Sánchez I, Escóbedo RM, Quiroz A (1991) New cytotaxonomical determinants recognized in six taxa of Agave in the sections Rigidae and Sisalanae. Can J Bot 69:1257–1264. doi:10.1139/b91-163

    Article  Google Scholar 

  • Cavallini A, Natali L, Cionini G, Castorena-Sánchez I (1995) Cytophotometric and biochemical analyses of DNA in pentaploid and diploid Agave species. Genome 39:266–271

    Article  Google Scholar 

  • Choquer M, Boccara M, Vidal-Cros A (2003) A semi-quantitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta. Curr Genet 43:303–9. doi:10.1007/s00294-003-0397-0

    Article  PubMed  CAS  Google Scholar 

  • Colunga-GarcíaMarín P, May-Pat (1997) Morphological variation of Henequén germplasm and its wild ancestor under uniform growth conditions: diversity and domestication. Am J Bot 84:1449–1465

    Article  PubMed  Google Scholar 

  • Colunga-GarcíaMarín P, Coello-Coello J, Eguiarte LE, Piñero D (1999) Isozymatic variation and phylogenetic relationships between henequén (Agave fourcroydes) and its wild ancestor A. angustifolia (Agavaceae). Am J Bot 86:115–123

    Article  PubMed  Google Scholar 

  • Dadejová M, Lim KY, Soucková-Skalická K et al (2007) Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytol 174:658–668. doi:10.1111/j.1469-8137.2007.02034.x

    Article  PubMed  Google Scholar 

  • Doughty LR (1936) Chromosome behaviour in relation to genetics of Agave. I. Seven species of fibre Agave. J Genet 33:198–205. doi:10.1007/BF02982532

    Article  Google Scholar 

  • Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117. doi:10.1038/299111a0

    Article  PubMed  CAS  Google Scholar 

  • Drouin G, Moniz de Sá M (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol 12:481–493

    PubMed  CAS  Google Scholar 

  • Dydak M, Kolano B, Nowak T, Siwinska D, Maluszynska J (2009) Cytogenetic studies of three European species of Centaurea L. (Asteraceae). Hereditas 146:152–161. doi:10.1111/j.1601-5223.2009.02113.x

    Article  PubMed  Google Scholar 

  • Echeverria-Machado I, Sánchez-Cach LA, Hernández-Zepeda C, Rivera-Madrid R, Moreno-Valenzuela OA (2005) A simple and efficient method for isolation of DNA in high mucilagenous plant tissues. Mol Biotechnol 31:129–135

    Article  Google Scholar 

  • Eguiarte LE, Silva Montellano A, Souza V (2000) Evolución de la familia Agavaceae: filogenia, biología reproductiva y genética de poblaciones. Bol Soc Bot Méx 66:131–151

    Google Scholar 

  • Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485. doi:10.1534/genetics.107.071399

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploidy wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    PubMed  CAS  PubMed Central  Google Scholar 

  • Flavell RB, O’Dell M, Thompson WF, Vincent MZ, Sardana R, Barker RF (1986) The differential expression of ribosomal RNA genes. Philos Trans R Soc B Biol Sci 314:385–397. doi:10.1098/rstb.1986.0060

    Article  CAS  Google Scholar 

  • French SL, Osheim NY, Cioci F, Nomura M, Beyer LA (2003) In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol Cell Biol 23:1558–1568. doi:10.1128/MCB.23.5.1558

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fulnecek J, Lim KY, Leitch AR, Kovarik A, Matyasek R (2002) Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity (Edinb) 88:19–25. doi:10.1038/sj/hdy/6800001

    Article  CAS  Google Scholar 

  • Gaeta RT, Yoo S-Y, Pires JC, Doerge RW, Chen ZJ, Osborn CT (2009) Analysis of gene expression in resynthesized Brassica napus allopolyploids using Arabidopsis 70mer oligo microarrays. PLoS One 4:e4760. doi:10.1371/journal.pone.0004760

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia S, Panero JL, Siroky J, Kovarik A (2010) Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol 10:176. doi:10.1186/1471-2229-10-176

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia S, Khaitová CL, Kovařík A (2012) Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence. BMC Plant Biol 12:95. doi:10.1186/1471-2229-12-95

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • García-Mendoza AJ (2007) Los agaves de México. Ciencias 087:14–23

    Google Scholar 

  • Gentry HS (1982) Agaves of continental North America. University of Arizona Press, Tucson, p 670

    Google Scholar 

  • Gil-Vega K, González M, Martínez de la Vega O, Simpson J, Vandemark G (2001) Analysis of genetic diversity in Agave tequilana var. Azul using RAPD markers. Euphytica 119:335–341

    Article  Google Scholar 

  • Gil-Vega K, Díaz C, Nava-Cedillo A, Simpson J (2006) AFLP analysis of Agave tequilana varieties. Plant Sci 170:904–909. doi:10.1016/j.plantsci.2005.12.014

    Article  CAS  Google Scholar 

  • Good-Avila SV, Souza V, Gaut BS, Eguiarte LE (2006) Timing and rate of speciation in Agave (Agavaceae). Proc Natl Acad Sci U S A 103:9124–9. doi:10.1073/pnas.0603312103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Granick EB (1944) A karyosystematic study of the genus Agave. Am J Bot 31:283–298

    Article  Google Scholar 

  • Greilhuber J, Dolezel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann Bot 95:255–60. doi:10.1093/aob/mci019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gruber AR, Neuböck R, Hofacker IL, Washietl S (2007) The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures. Nucleic Acids Res 35:W335–8. doi:10.1093/nar/gkm222

    Article  PubMed  PubMed Central  Google Scholar 

  • Hacquard S, Veneault-Fourrey C, Delaruelle C, Frey P, Martin F, Duplessis S (2011) Validation of Melampsora larici-populina reference genes for in planta RT-quantitative PCR expression profiling during time-course infection of poplar leaves. Physiol Mol Plant Pathol 75:106–112. doi:10.1016/j.pmpp.2010.10.003

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids 41:95–98

    CAS  Google Scholar 

  • Hartmann S, Nason JD, Bhattacharya D (2001) Extensive ribosomal DNA genic variation in the columnar cactus Lophocereus. J Mol Evol 53:124–34. doi:10.1007/s002390010200

    Article  PubMed  CAS  Google Scholar 

  • Hawkes JG (1979) Evolution and polyploidy in potato species. En: the biology and taxonomy of the Solanaceae, (Ed.Hawkes, J.G). Linnean Soc Symp Ser 7:637–646

    Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453

    Article  PubMed  CAS  Google Scholar 

  • Hsiao C, Chatterton NJ, Asay KH, Jensen KB (1995) Phylogenetic relationship of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38:211–222. doi:10.1139/g95-026

    Article  PubMed  CAS  Google Scholar 

  • Infante D, González G, Peraza-Echeverría L, Keb-LLanes M (2003) Asexual genetic variability in Agave fourcroydes. Plant Sci 164:223–230. doi:10.1016/S0168-9452(02)00404-1

    Article  CAS  Google Scholar 

  • Jefrey CZ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploidy plants: biased expression silencing of progenitor rRNA genes is developmentally regulated in Brassica (rDNA, nucleolus, RNA polymerase, gene silencing, epigenetic phenomena). Plant Biol 94:3442–3447

    Google Scholar 

  • Kashkush K, Feldman M, Levy A (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    PubMed  CAS  PubMed Central  Google Scholar 

  • Khaitová L, Werlemark G, Nybom H, Kovarík A (2010) Frequent silencing of rDNA loci on the univalent-forming genomes contrasts with their stable expression on the bivalent-forming genomes in polyploid dogroses (Rosa sect. Caninae). Heredity (Edinb) 104:113–20. doi:10.1038/hdy.2009.94

    Article  Google Scholar 

  • Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823. doi:10.1093/aob/mcn019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607–613. doi:10.1111/j.1095-8312.2004.00346.x

    Article  Google Scholar 

  • Long EO, David IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Article  PubMed  CAS  Google Scholar 

  • Magallón S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55:1762–1780

    Article  PubMed  Google Scholar 

  • Marmagne A, Brabant P, Thiellement H, Alix K (2010) Analysis of gene expression in resynthesized Brassica napus allotetraploids: transcriptional changes do not explain differential protein regulation. New Phytol 186:216–227. doi:10.1111/j.1469-8137.2009.03139.x

    Article  PubMed  CAS  Google Scholar 

  • Maroufi A, Van Bockstaele E, De Loose M (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11:15. doi:10.1186/1471-2199-11-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Márquez LM, Miller DJ, MacKenzie JB, Van Oppen MJH (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol Biol Evol 20:1077–86. doi:10.1093/molbev/msg122

    Article  PubMed  Google Scholar 

  • Massey LK, Hamrick JL (1998) Genetic diversity and population structure of Yucca filamentosa (Agavaceae). Am J Bot 85(3):340–345. doi:10.2307/2446326

    Article  PubMed  CAS  Google Scholar 

  • Mayol M, Rosselló JA (2001) Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus. Mol Phylogenet Evol 19:167–176. doi:10.1006/mpev.2001.0934

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Salazar SF, Esqueda MA, Martínez J, Palomino G (2007) Nuclear genome size and karyotype of Agave angustifolia and A rhodacantha from Sonora, México. Rev Fitotec Mex 30:13–23

    Google Scholar 

  • Muir G, Fleming CC, Schlotterer C (2001) Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Mol Biol Evol 18:112–119

    Article  PubMed  CAS  Google Scholar 

  • Ng’uni D, Geleta M, Fatih M, Bryngelsson T (2010) Phylogenetic analysis of the genus Sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages. Ann Bot 105:471–80. doi:10.1093/aob/mcp305

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicot N, Hausman J-F, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914. doi:10.1093/jxb/eri285

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama T, Kato M (1999) Molecular phylogenetic analysis among Bryophytes and Tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene. Mol Biol Evol 16:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS (1998) Los incomparables agaves y cactos. Primera edición en español. Ed. Trillas, México

    Google Scholar 

  • Palomino G, Dolezel J, Méndez I, Rubluo A (2003) Nuclear genome size analysis of Agave tequilana Weber. Caryologia 56:37–46. doi:10.1080/00087114.2003.10589305

    Article  Google Scholar 

  • Palomino G, Martinez J, Méndez I (2005) Citotipos en Agave angustifolia Haw. determinados por citometría de flujo y ánalisis de sus cariotipos. Rev Int Contam Ambient 21:49–54

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pires JC, Lim KY, Kovarík A, Matyásek R, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE (2004) Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022–1035. doi:10.3732/ajb.91.7.1022

    Article  PubMed  CAS  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245. doi:10.1073/pnas.0407258102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Preuss S, Pikaard CS (2007) rRNA gene silence and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim Biophys Acta Gene Struct Expr 1769:383–392. doi:10.1016/j.bbaexp.2007.02.2005

    Article  CAS  Google Scholar 

  • Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129. doi:10.1186/1471-2105-11-129

    Article  PubMed  PubMed Central  Google Scholar 

  • Rich SM, Rosenthal BM, Telford SR III, Spielman A, Harti DL, Ayala FJ (1997) Heterogeneity of the internal transcribed spacer (ITS-2) region within individual deer ticks. Insect Mol Biol 6:123–129. doi:10.1111/j.1365-2583.1997.tb00080.x

    Article  PubMed  CAS  Google Scholar 

  • Robert ML, Lim KY, Hanson L, Sanchez-Teyer F, Bennett MD, Leitch RA, Leitch IJ (2008) Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Bot J Linn Soc 158:215–222. doi:10.1111/j.1095-8339.2008.00831.x

    Article  Google Scholar 

  • Román MI, Alonso M, Xonia X, González SC (2004) Estudio del número cromosómico y la fertilidad del polen en especies y clones diploides de Platano fruta (Musa spp). Cultivos Tropicales 25:71–73

    Google Scholar 

  • Sandmeier JJ, French S, Osheim Y, Cheung WL, Gallo M, Beyer AL, Smith JS (2002) RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase. EMBO J 21:4959–4968. doi:10.1093/emboj/cdf498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Serrano-Serrano ML, Andueza-Noh RH, Martínez-Castillo J, Debouck GD, Chacón IM (2012) Evolution and domestication of Lima Bean in Mexico: evidence from ribosomal DNA. Crop Sci 52:1698. doi:10.2135/cropsci2011.12.0642

    Article  Google Scholar 

  • Shishido R, Sano Y, Fukui K (2000) Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol Gen Genet 263:586–591. doi:10.1007/s004380051205

    Article  PubMed  CAS  Google Scholar 

  • Suh Y, Thien LB, Reeve HE, Zimmer EA (1993) Molecular evolution and phylogenetic implications of internal transcribed spacer sequence of ribosomal DNA in Winteraceae. Am J Bot 80:1042–1055

    Article  CAS  Google Scholar 

  • Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2002) 5S ribosomal RNA database. Nucleic Acids Res 30:176–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Szymański M, Miroslawa B, Volker EA, Barciszewski J (2003) 5S rRNA: structure and interactions. Biochem J 371:641–651. doi:10.1042/BJ20020872

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamayo-Ordóñez M, Rodríguez -Zapata LC, Sánchez-Teyer LF (2012) Construction and characterization of a partial binary bacterial artificial chromosome (BIBAC) of Agave tequilana var. azul (2X) and its application for gene identification. Afr J Biotechnol 11:15950–15958. doi:10.5897/AJB12.2041

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple; sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson JN, Nuismer SL, Merg K (2004) Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biol J Linn Soc 82:511–519. doi:10.1111/j.1095-8312.2004.00338.x

    Article  Google Scholar 

  • Torres-Maldonado L, Moreno-Mendoza N, Landa A, Merchant-Larios H (2001) Timing of SOX9 downregulation and female sex determination in gonads of the sea Turtle Lepidochelys olivacea. J Exp Zool 290:498–503. doi:10.1002/jez.1093

    Article  PubMed  CAS  Google Scholar 

  • Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:S3–S14. doi:10.2135/cropsci2006.07.0489tpg

    Article  Google Scholar 

  • Vaio M, Speranza P, Valls JF, Guerra M, Mazzella C (2005) Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). Ann Bot 96:191–200. doi:10.1093/aob/mci168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Valenzuela GA (1997) El Agave tequilero, su cultivo e industria. Segunda edición. Monsanto-Litteris editores, México

    Google Scholar 

  • Vargas-Ponce O, Zizumbo-Villarreal D, Colunga-GarciaMarin P (2007) In situ diversity and maintenance of traditional Agave Landraces used in spirits production in West-Central Mexico. Econ Bot 61:362–375

    Article  Google Scholar 

  • Vargas-Ponce O, Zizumbo-Villareal D, Martínez-Castillo J, Coello-Coello J, Colunga-GarcíaMarín P (2009) Diversity and structure of landraces of Agave grown for spirits under traditional agriculture: a comparison with wild populations of A. angustifolia (Agavaceae) and commercial plantations of A. tequilana. Am J Bot 96:448–457. doi:10.3732/ajb.0800176

    Article  PubMed  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) Bi-directional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang HB, Zhao XP, Ding XL, Paterson AH, Wing R (1995) Preparation of megabase-size DNA from plant nuclei. Plant J 7:175–184. doi:10.1046/j.1365-313X.1995.07010175.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to María Concepción Tamayo Ordóñez, PhD, for her critical revision of the MS and Adriana Quiroz Moreno MC for her technical assistance. This project was supported by the National Council of Science and Technology of Mexico by the projects 50268 and 180757 and the fellow (240190) for the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Sánchez-Teyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure A

(1) 5S rDNA primer localization for different sequences obtained from Genbank. Accession numbers are JN051136, JX975658, AY544252, HQ270935, U02637, EF071653, EU093377, EU925062, FJ882491, AJ390208, DQ351339 and EF071691 for Elymus sibiricus L., Lycoris radiate L’Hér., Hordeum chilense Roem. et Schultz, Aegilops ventricosa Tausch, Eleusine coracana Gaertner, Avena occidentalis L., Pseudoroegneria spicata Pursh, Aegilop scomosa L., Triticum turgidum L., Helictotrichon versicolor Schult. & Schult. f., Zea mays L. and Avena sativa L., respectively. (2) 18S rDNA primer localization concerning to different sequences obtained from Genbank. Accession numbers are HM640709, JQ283933, JQ283917, JQ283914, AF206841, JQ283900 and GU980213 for Agave ghiesbreghtii Lem., Echeandia sp., Sansevieria trifasciata Prain, Liriope spicata, Agave ghiesbreghtii Lem., Asparagus officinalis and Agave tequilana cultivar Azul, respectively. (3) Actin gene primer localization for different sequences obtained from Genbank. Accession numbers are AY550991, JX826390, HQ148720, NM001153459, HQ395760, AF237626, AK101613, AY014278, JX310699, AK365182, FP099325 and GQ983555 for Elaeis guineensis Jacq, Lilium regale L., Ananas comosus L., Zea mays L., Echinochloa crus-galli L., Vallisneria natans L., Oryza sativa L., Lolium perenne L., Narcissus tazetta L., Hordeum vulgare L, Phyllostachys edulis and Agave tequilana Weber cultivar Azul, respectively. (GIF 468 kb)

High Resolution Image (TIFF 21705 kb)

Supplementary Figure B

Polymorphisms in (1) 5S and 18S (2) rDNA haplotypes. Polymorphism positions are showed according to closest genetic related sequences retrieved from Genbank for 5S (Triticum turgidum; FJ882491) and 18S (Agave tequilana; GU980213) rDNA genes, respectively (GIF 120 kb)

High Resolution Image (TIFF 156 kb)

Supplementary Figure C

Examples of electropherograms obtained from different Agave accessions using 18S rDNA PCR products. (1) A. tequilana Weber (2n=2x=60), (2) A. angustifolia Ham. (2n=2x=60), (3) A. angustifolia Ham. (2n=6x=180), (4) A. fourcroydes Lem. (2n=3x=90) and (5) A. fourcroydes Lem. (2n=5x=150). Allelic peak numbered as 1 was about 187 bp. (GIF 62 kb)

High Resolution Image (TIFF 152 kb)

Supplementary Figure D

5S rDNA copies analysis. Specific 5S rDNA copies per genome for each detected peak in capillary analysis. Error bars represent the standard error (n = 3). Different letters in the bars represent the statistical significance of mean differences between each allelic group in the accessions of Agave L. determination according to the Tukey test (P ≤ 0.05). (GIF 57 kb)

High Resolution Image (TIFF 157 kb)

Supplementary Table A

(DOCX 16 kb)

Supplementary Table B

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamayo-Ordóñez, Y.J., Narváez-Zapata, J.A. & Sánchez-Teyer, L.F. Comparative Characterization of Ribosomal DNA Regions in Different Agave Accessions with Economical Importance. Plant Mol Biol Rep 33, 2014–2029 (2015). https://doi.org/10.1007/s11105-015-0895-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0895-5

Keywords

Navigation