Skip to main content
Log in

A Point Mutation of Magnesium Chelatase OsCHLI Gene Dampens the Interaction Between CHLI and CHLD Subunits in Rice

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Proper chloroplast development and chlorophyll biosynthesis are essential for the photoautotrophic plants. The insertion of magnesium (Mg2+) into protoporphyrin IX (Proto), catalyzed by magnesium chelatase (Mg-chelatase), is the first committed step of chlorophyll biosynthesis. In dicot plants, a proposed model revealed that Mg-chelatase I subunit (CHLI) and Mg-chelatase D subunit (CHLD) can interact directly; however, their relation remains elusive in rice, a monocot model plant. In this study, we characterized a chlorophyll-deficiency mutant, etiolated leaf and lethal (ell), which displayed a yellow leaf in young seedlings and became lethal after three-leaf stage. Chlorophyll content in homozygous ell mutant was approximately 1 % of that in the wild type. Besides, chloroplast development in the mutant was entirely arrested and no thylakoid structure was observed. By map-based cloning, the ell locus was delimited to a 3.9-Mb interval in chromosome 3. A single-base mutation (G529C) in OsCHLI was identified, leading to an amino acid substitution (G177R) in a highly conserved region. Compared with the wild type, more Proto but less magnesium protoporphyrin IX (Mg-Proto) was measured in the ell mutant. Using protoplast transfection and callus transformation, we found that exogenous OsCHLI could consistently recover the lesion of chloroplast in the ell mutant. By subcellar localization analysis, OsCHLI was detected in the chloroplast. Despite the secondary structure of OsCHLI that was predicted to be altered in the mutant, the point mutation did not affect subcellular localization. Real-time PCR demonstrated that the ell mutation induced significantly transcriptional downregulation of the photosynthesis-associated nuclear and plastid genes. Additionally, yeast-two-hybrid experiments indicated that the single amino acid substitution blocked the intrinsic interaction between OsCHLI and OsCHLD. Moreover, OsCHLI showed physical interactions with some thioredoxins (TRXs), suggesting a similar regulatory mechanism of Mg-chelatase activity in both monocot and dicot plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Proto:

Protoporphyrin IX

Mg-chelatase:

Magnesium chelatase

ell :

Etiolated leaf and lethal

Mg-Proto:

Magnesium protoporphyrin IX

TRX:

Thioredoxin

EMS:

Ethyl methyl sulfonate

CHLH:

Mg-chelatase H subunit

CHLI:

Mg-chelatase I subunit

CHLD:

Mg-chelatase D subunit

Pchlide:

Protochlorophyllide

References

  • Arsova B, Hoja U, Wimmelbacher M, Greiner E, Üstün Ş, Melzer M, Börnke F (2010) Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22:1498–1515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM, Bauer CE (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237:622–640

    Article  PubMed  CAS  Google Scholar 

  • Brindley AA, Raux E, Leech HK, Schubert HL, Warren MJ (2003) A story of chelatase evolution: identification and characterization of a small 13-15 kDa “ancestral” cobaltochelatase (CbiXS) in the archaea. J Biol Chem 278:22388–22395

    Article  PubMed  CAS  Google Scholar 

  • Coomber SA, Chaudhri M, Connor A, Britton G, Hunter CN (1990) Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol 4:977–989

    Article  PubMed  CAS  Google Scholar 

  • Czarnecki O, Grimm B (2012) Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J Exp Bot 63:1675–1687

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Hicks JB (1983) A new plant DNA minipreparation: version II. Plant Mol Biol Report 1:19–21

    Article  CAS  Google Scholar 

  • Erzberger JP, Berger JM (2006) Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 35:93–114

    Article  PubMed  CAS  Google Scholar 

  • Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD, Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311:111–122

    Article  PubMed  CAS  Google Scholar 

  • Gibson LC, Willows RD, Kannangara CG, von Wettstein D, Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A 92:1941–1944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansson A, Kannangara CG, von Wettstein D, Hansson M (1999) Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci 96:1744–1749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansson A, Willows RD, Roberts TH, Hansson M (2002) Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Natl Acad Sci 99:13944–13949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK, Boyd CO, Paavola LG (1991) Origin of thylakoid membranes in Chlamydomonas reinhardtii y-1 at 38 °C. Plant Physiol 96:1321–1328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang YS, Li HM (2009) Arabidopsis CHLI2 can substitute for CHLI1. Plant Physiol 150:636–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PG, Hisabori T, Masuda T (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282:19282–19291

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146:11–31

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LCD, Henningsen KW, Hunter CN (1996) Expression of the chlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271:16662–16667

    Article  PubMed  CAS  Google Scholar 

  • Jensen P, Gibson L, Hunter C (1999) ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits. Biochem J 339:127–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180

    Article  PubMed  CAS  Google Scholar 

  • Kannangara CG, Gough SP, Bruyan P, Hoober JK, Kahn A, Von Wettstein D (1988) tRNAGlu as a cofactor in δ-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends Biochem Sci 13:139–143

    Article  PubMed  CAS  Google Scholar 

  • Koncz CS, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP, Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9:1337–1346

    PubMed  PubMed Central  CAS  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Ball MD, Parham R, Rebeiz CA (1992) Chloroplast biogenesis 65. Enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts. Plant Physiol 99:1134–1140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lundqvist J, Elmlund H, Wulff RP, Berglund L, Elmlund D, Emanuelsson C, Al-Karadaghi S (2010) ATP-induced conformational dynamics in the AAA+ motor unit of magnesium chelatase. Structure 18:354–365

    Article  PubMed  CAS  Google Scholar 

  • Luo T, Fan T, Liu Y, Rothbart M, Yu J, Zhou S, Luo M (2012) Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol 159:118–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masuda T (2008) Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth Res 96:121–143

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol 135:2379–2391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miernyk JA, Thelen JJ (2008) Biochemical approaches for discovering protein-protein interactions. Plant J 53:597–609

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci U S A 98:2053–2058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakayama M, Masuda T, Sato N, Yamagata H, Bowler C, Ohta H, Takamiya KI (1995) Cloning, subcellular localization and expression of chl1, a subunit of magnesium chelatase in soybean. Biochem Biophys Res Commun 215:422–428

    Article  PubMed  CAS  Google Scholar 

  • Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Ruiza JM, Guineaa M, Puerto-Galána L, Cejudoa FJ (2014) NADPH thioredoxin reductase C is involved in redox regulation of the Mg-chelatase I subunit in Arabidopsis thaliana chloroplasts. Mol Plant 7:1252–1255

    Article  CAS  Google Scholar 

  • Petersen BL, Jensen PE, Gibson LC, Stummann BM, Hunter CN, Henningsen KW (1998) Reconstitution of an active magnesium chelatase enzyme complex from the bchI, -D, and -H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli. J Bacteriol 180:699–704

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol 155:1545–1551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinhold T, Alawady A, Grimm B, Beran KC, Jahns P, Conrath U, Neuhaus HE (2007) Limitation of nocturnal import of ATP into Arabidopsis chloroplasts leads to photooxidative damage. Plant J 50:293–304

    Article  PubMed  CAS  Google Scholar 

  • Richter AS, Peter E, Rothbart M, Schlicke H, Toivola J, Rintamäki E, Grimm B (2013) Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. Plant Physiol 162:63–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rissler HM, Collakova E, DellaPenna D, Whelan J, Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128:770–779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawers RJ, Viney J, Farmer PR, Bussey RR, Olsefski G, Anufrikova K, Brutnell TP (2006) The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol 60:95–106

    Article  PubMed  CAS  Google Scholar 

  • Solymosi K, Schoefs B (2010) Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res 105:143–166

    Article  PubMed  CAS  Google Scholar 

  • Tagwerker C, Flick K, Cui M, Guerrero C, Dou Y, Auer B, Baldi P, Huang L, Kaiser P (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo cross-linking. Mol Cell Proteomics 5:737–748

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Kobayashi K, Masuda T (2011) Tetrapyrrole metabolism in Arabidopsis thaliana. The Arabidopsis Book 9:e0145

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathy BC, Pattanayak GK (2012) Chlorophyll biosynthesis in higher plants. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation, advances in photosynthesis and respiration, vol 34. Springer, The Netherlands, pp 63–94

    Chapter  Google Scholar 

  • Tripathy BC, Rebeiz CA (1985) Chloroplast biogenesis: quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyll(ides) by spectrofluorometry. Anal Biochem 149:43–61

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  • Waadt R, Kudla J (2008) In planta visualization of protein interactions using bimolecular fluorescence complementation (BiFC). Cold Spring Harbor Protoc. port4995

  • Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–516

    Article  PubMed  CAS  Google Scholar 

  • Willows RD, Beale SI (1998) Heterologous expression of the Rhodobacter capsulatus BchI, -D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. J Biol Chem 273:34206–34213

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Kanno A, Sato T, Kameya T (1996) Cool-temperature-induced chlorosis in rice plants (I. Relationship between the induction and a disturbance of etioplast development). Plant Physiol 110:997–1005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Paek NC (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by “the Fundamental Research Funds for the Central Universities (KYY201301)”, “the Key Science and Technology Specific Projects of Guizhou Province (Grant no. 2012-6005)”, the National Science and Technology supporting program (2013BAD01B02-16), the High Technology Program from NDRC ([2012]1961), and the Jiangsu Science and Technology Development Program (BE2012303, BE2013301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saihua Chen or Jianmin Wan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Summary of primers (DOCX 16 kb)

Supplementary Fig. S1

Abundance of Proto, Mg-Proto and Pchilide in wild type and ell mutant. Proto accumulated in ell mutant, but Mg-Proto and Pchilide were decreased compared with the wild type. WT, wild type; **p < 0.01 (GIF 15 kb)

High Resolution Image (TIFF 1872 kb)

Supplementary Fig. S2

Expression analysis of photosynthesis-associated nuclear and plastid genes in the wild type and ell mutant. rpoA (the RNA polymerase A subunit), rpoB (the RNA polymerase B subunit), Lhc (light-harvesting complex protein), psbA (a core component of photosystem II), and rps7 (ribosomal protein S7). Relative amounts were recalculated using the level of Actin transcript as internal control; Nip, Nipponbare; *p < 0.05; **p < 0.01 (GIF 20 kb)

High Resolution Image (TIFF 2672 kb)

Supplementary Fig. S3

Negative controls of BiFC assay. YFP, fluorescence of yellow fluorescent protein; Chl, chlorophyll autofluorescence; ER-mCherry, fluorescence of ER marker, mCherry ER rk CD3-959; Merged, merged image of YFP, Chl and ER-mCherry; bars = 10 μm (GIF 442 kb)

High Resolution Image (TIFF 23033 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, L., Cai, M. et al. A Point Mutation of Magnesium Chelatase OsCHLI Gene Dampens the Interaction Between CHLI and CHLD Subunits in Rice. Plant Mol Biol Rep 33, 1975–1987 (2015). https://doi.org/10.1007/s11105-015-0889-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0889-3

Keywords

Navigation