Skip to main content
Log in

Transcriptomic Profiling of Apple in Response to Inoculation with a Pathogen (Penicillium expansum) and a Non-pathogen (Penicillium digitatum)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Penicillium expansum, the causal agent of blue mould of pome fruits, is a major postharvest pathogen in all producing countries. To develop a better understanding of disease resistance mechanisms in apples, a comprehensive transcriptional analysis of apple gene expression in response to a compatible (P. expansum) and non-host (Penicillium digitatum) pathogen was conducted using an apple microarray of approximately 40,000 probes. The resulting data provide further evidence that apples inoculated with P. expansum exhibit significant upregulation of defense-related genes and genes involved in detoxification of reactive oxygen species. In contrast, apples inoculated with P. digitatum, a non-host pathogen, exhibited upregulation of genes involved in phenylpropanoid metabolism. To confirm the accuracy of the expression profiles obtained with the microarray, reverse transcriptase-quantitative polymerase chain reaction was conducted for four genes specifically in the phenylpropanoid pathway. Expression data was obtained for different time points and fruit maturity stages. The highest expression level of the phenylpropanoid genes was detected 48 h after inoculation with P. expansum in both immature and mature apples. These results support the hypothesis that apples respond in a complex and diverse manner to the compatible compared to the non-host pathogen. To the best of our knowledge, this is the first study in apple fruit that has conducted an analysis of global changes in gene expression in response to a compatible (P. expansum) and non-host (P. digitatum) pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J, Ausubel FM (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12:1823–1835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    Article  CAS  PubMed  Google Scholar 

  • Ballester A-R, Lafuente MT, de Vos RCH, Bovy AG, González-Candelas L (2013) Citrus phenylpropanoids and defence against pathogens. Part I: metabolic profiling in elicited fruits. Food Chem 136:178–185

    Article  CAS  PubMed  Google Scholar 

  • Ballester AR, Izquierdo A, Lafuente MT, González-Candelas L (2010) Biochemical and molecular characterization of induced resistance against Penicillium digitatum in citrus fruit. Postharvest Biol Technol 56:31–38

    Article  CAS  Google Scholar 

  • Ballester AR, Lafuente MT, González-Candelas L (2006) Spatial study of antioxidant enzymes, peroxidase and phenylalanine ammonia-lyase in the citrus fruit–Penicillium digitatum interaction. Postharvest Biol Technol 39:115–124

    Article  CAS  Google Scholar 

  • Bocsanczy A, Norelli JL, Phillips JG, Dardick CD, Korban SS, Bassett CL, Wisniewski ME (2009) Analysis of apple (Malus) responses to bacterial pathogens using an oligo microarray. Phytopathology 99:S14

    Article  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buron-Moles G, Torres R, Amoako-Andoh F, Viñas I, Teixidó N, Usall J, Keulemans W, Davey MW (2014) Analysis of changes in protein abundance after wounding in ‘Golden Delicious’ apples. Postharvest Biol Technol 87:51–60

    Article  CAS  Google Scholar 

  • Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB, Labavitch JM, Powell ALT (2008a) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci U S A 105:859–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell ALT (2008b) Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci 13:610–617

    Article  CAS  PubMed  Google Scholar 

  • Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116:865–869

    CAS  Google Scholar 

  • Chiu CM, You BJ, Chou CM, Yu PL, Yu FY, Pan SM, Bostock RM, Chung KR, Lee MH (2013) Redox status-mediated regulation of gene expression and virulence in the brown rot pathogen Monilinia fructicola. Plant Pathol 62:809–819

    Article  CAS  Google Scholar 

  • De Gara L, de Pinto MC, Tommasi F (2003) The antioxidant systems vis-a-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol Bioch 41:863–870

    Article  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • FAOSTAT (2011) http://faostat.fao.org/faostat/production. Accessed on 18 August 2013

  • Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437–438

    Article  CAS  Google Scholar 

  • Gechev TS, Gadjev IZ, Hille J (2004) An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants. Cell Mol Life Sci 61:1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • González-Candelas L, Alamar S, Sánchez-Torres P, Zacarias L, Marcos JF (2010) A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC Plant Biol 10:194–211

    Article  PubMed Central  PubMed  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hershkovitz V, Ben-Dayan C, Raphael G, Pasmanik-Chor M, Liu J, Belausov E, Aly R, Wisniewski M, Droby S (2012) Global changes in gene expression of grapefruit peel tissue in response to the yeast biocontrol agent Metschnikowia fructicola. Mol Plant Pathol 13:338–349

    Article  CAS  PubMed  Google Scholar 

  • Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Kavanagh J, Wood R (1967) Role of wounds in infection of oranges by Penicillium digitatum Sacc. Ann Appl Biol 60:375–383

    Article  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Lauxmann MA, Brun B, Borsani J, Bustamante CA, Budde CO, Lara MV, Drincovich MF (2012) Transcriptomic profiling during the post-harvest of heat-treated Dixiland Prunus persica fruits: common and distinct response to heat and cold. Plos One 7:e51052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee Y-P, Yu G-H, Seo YS, Han SE, Choi Y-O, Kim D, Mok I-G, Kim WT, Sung S-K (2007) Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep 26:917–926

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Lewis NG, Davin LB, Sarkanen S (1999) The nature and functions of lignins. In: Barton DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry, vol 1. Elsevier, Oxford, pp 617–745

    Chapter  Google Scholar 

  • Low PS, Merida JR (1996) The oxidative burst in plant defense: function and signal transduction. Physiol Plant 96:533–542

    Article  CAS  Google Scholar 

  • Macarisin D, Cohen L, Eick A, Rafael G, Belausov E, Wisniewski M, Droby S (2007) Penicillium digitatum suppresses production of hydrogen peroxide in host tissue infection of citrus fruit. Phytopathology 97:1491–1500

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed Central  PubMed  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Olson PD, Varner JE (1993) Hydrogen peroxide and lignification. Plant J 4:887–892

    Article  CAS  Google Scholar 

  • Pavez L, Hödar C, Olivares F, González M, Cambiazo V (2013) Effects of postharvest treatments on gene expression in Prunus persica fruit: normal and altered ripening. Postharvest Biol Technol 75:125–134

    Article  CAS  Google Scholar 

  • Peng XL, Xu WT, Wang Y, Huang KL, Liang ZH, Zhao WW, Luo YB (2010) Mycotoxin ochratoxin A-induced cell death and changes in oxidative metabolism of Arabidopsis thaliana. Plant Cell Rep 29:153–161

    Article  PubMed  Google Scholar 

  • Planton G (1995) Le test amidon des pommes. Le Point, 6. CTIFL, Paris

  • Quaglia M, Ederli L, Pasqualini S, Zazzerini A (2011) Biological control agents and chemical inducers of resistance for postharvest control of Penicillium expansum Link. on apple fruit. Postharvest Biol Technol 59:307–315

    Article  CAS  Google Scholar 

  • Rolke Y, Liu SJ, Quidde T, Williamson B, Schouten A, Weltring KM, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5:17–27

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Torres P, González-Candelas L (2003) Isolation and characterization of genes differentially expressed during the interaction between apple fruit and Penicillium expansum. Mol Plant Pathol 4:447–457

    Article  PubMed  Google Scholar 

  • Sarowar S, Zhao Y, Soria-Guerra RE, Ali S, Zheng D, Wang D, Korban SS (2011) Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. J Exp Bot 62:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J-H, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao J-L, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva MC, Nicole M, Guerra-Guimaraes L, Rodrigues CJ (2002) Hypersensitive cell death and post-haustorial defence responses arrest the orange rust (Hemileia vastatrix) growth in resistant coffee leaves. Physiol Mol Plant Pathol 60:169–183

    Article  CAS  Google Scholar 

  • Simmons CR, Grant S, Altier DJ, Dowd PF, Crasta O, Folkerts O, Yalpani N (2001) Maize rhm1 resistance to Bipolaris maydis is associated with few differences in pathogenesis-related proteins and global mRNA profiles. Mol Plant-Microbe Interact 14:947–954

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Singh Z, Swinny EE (2012) Climacteric level during fruit ripening influences lipid peroxidation and enzymatic and non-enzymatic antioxidative systems in Japanese plums (Prunus salicina Lindell). Postharvest Biol Technol 65:22–32

    Article  CAS  Google Scholar 

  • Soria-Guerra RE, Rosales-Mendoza S, Gasic K, Wisniewski ME, Band M, Korban SS (2011) Gene expression is highly regulated in early developing fruit of apple. Plant Mol Biol Rep 29:885–897

    Article  CAS  Google Scholar 

  • Spotts RA, Sanderson PG, Lennox CL, Sugar D, Cervantes LA (1998) Wounding, wound healing and staining of mature pear fruit. Postharvest Biol Technol 13:27–36

    Article  Google Scholar 

  • Stone JM, Heard JE, Asai T, Ausubel FM (2000) Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants. Plant Cell 12:1811–1822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Su J, Tu K, Cheng L, Tu SC, Wang M, Xu HR, Zhan G (2011) Wound-induced H2O2 and resistance to Botrytis cinerea decline with the ripening of apple fruit. Postharvest Biol Technol 62:64–70

    Article  CAS  Google Scholar 

  • Tao Y, Xie ZY, Chen WQ, Glazebrook J, Chang HS, Han B, Zhu T, Zou GZ, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. The Plant Cell 15:317–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MapMan: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torres R, Valentines MC, Usall J, Viñas I, Larrigaudiere C (2003) Possible involvement of hydrogen peroxide in the development of resistance mechanisms in ‘Golden Delicious’ apple fruit. Postharvest Biol Technol 27:235–242

    Article  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Vierling E (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Vilanova L, Teixidó N, Torres R, Usall J, Viñas I (2012a) The infection capacity of P. expansum and P. digitatum on apples and histochemical analysis of host response. Int J Food Microbiol 157:360–367

    Article  CAS  PubMed  Google Scholar 

  • Vilanova L, Torres R, Viñas I, González-Candelas L, Usall J, Fiori S, Solsona C, Teixidó N (2013) Wound response in orange as a resistance mechanism against Penicillium digitatum (pathogen) and P. expansum (non-host pathogen). Postharvest Biol Technol 78:113–122

    Article  CAS  Google Scholar 

  • Vilanova L, Viñas I, Torres R, Usall J, Jauset AM, Teixidó N (2012b) Infection capacities in the orange-pathogen relationship: compatible (Penicillium digitatum) and incompatible (Penicillium expansum) interactions. Food Microbiol 29:56–66

    Article  CAS  PubMed  Google Scholar 

  • Villarreal NM, Bustamante CA, Civello PM, Martinez GA (2010) Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. J Sci Food Agric 90:683–689

    CAS  PubMed  Google Scholar 

  • Wang HQ, Arakawa O, Motomura Y (2000) Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonia-lyase (PAL) activity in ‘Jonathan’ apples. Postharvest Biol Technol 19:123–128

    Article  CAS  Google Scholar 

  • Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637

    Article  CAS  PubMed  Google Scholar 

  • Yun Z, Gao HJ, Liu P, Liu SZ, Luo T, Jin S, Xu Q, Xu J, Cheng YJ, Deng XX (2013) Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biol 13:44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Lubberstedt T, Xu ML (2013) The genetic and molecular basis of plant resistance to pathogens. J Genet Genomics 40:23–35

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Dardick CD, Beers EP, Callanhan AM, Xia R, Yuan R (2011) Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biol 11:138

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Erik Burchard for his excellent technical assistance in all aspects of this study and Dr. Svetlana Dashevskaya for her help in RT-qPCR analysis. The authors are grateful to the Spanish Government for financial support by two national projects AGL2008-04828-C03/AGR and AGL2011-30519-C03/AGR (Plan Nacional de I+D+I, Ministerio de Ciencia e Innovación, Spain), and the “Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria” (INIA) for L. Vilanova PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Teixidó.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 29 kb)

ESM 2

(DOCX 327 kb)

ESM 3

(DOCX 307 kb)

ESM 4

(DOCX 318 kb)

ESM 5

(DOCX 302 kb)

ESM 6

(DOCX 323 kb)

ESM 7

(DOCX 80 kb)

ESM 8

(DOCX 81.4 kb)

ESM 9

(DOCX 80.9 kb)

ESM 10

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilanova, L., Wisniewski, M., Norelli, J. et al. Transcriptomic Profiling of Apple in Response to Inoculation with a Pathogen (Penicillium expansum) and a Non-pathogen (Penicillium digitatum). Plant Mol Biol Rep 32, 566–583 (2014). https://doi.org/10.1007/s11105-013-0676-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0676-y

Keywords

Navigation