Skip to main content
Log in

Cloning and Expression Studies of Novel Small RNAs in Tetraploid Cotton

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Small RNAs are a group of non-coding RNAs that downregulate gene expression in a sequence-specific manner to control plant growth and development. The objective of the present study was to clone and characterize several small RNAs in cotton. To identify small RNAs that are involved in the development of cotton bolls and fibers, we generated cDNA libraries from cotton bolls at 13 days post-anthesis from two cotton cultivars, Pima Phy 76 (Gossypium bardadense) and Acala 1517–99 (Gossypium hirsutum). Screening of these libraries identified eight small RNAs, seven of which have not been reported in other plant species and appear to be absent in the known sequences of other plant species. Their predicted target genes are known to be involved in cotton fiber development. The cloned small RNAs displayed lower and differential expression in the examined boll developmental stages using RT-PCR and quantitative RT-PCR. The genetic polymorphism of the small RNAs at the DNA level was evaluated by miRNA-amplified fragment length polymorphism (AFLP) analysis using primers designed from the small miRNA genes in combination with AFLP primers. Homologous small RNA gene sequences were further isolated using this homology-based genotyping approach, and potential hairpin structures were identified. The results represent a novel method to isolate small including miRNA genes at the RNA and DNA levels in many plant species where genome sequences are not available or expressed sequence tags are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdurakhmonov IY, Devor EJ, Buriev ZT, Huang L, Makamov A, Shermatov SE, Bozorov T, Kushanov FN, Mavlonov GT, Abdukarimov A (2008) Small RNA regulation of ovule development in the cotton plant, G. hirsutum L. BMC Plant Biol 8:93

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones SAM, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132:709–717

    Article  PubMed  CAS  Google Scholar 

  • Brosnan CA, Voinnet O (2009) The long and the short of noncoding RNAs. Curr Opin Cell Biol 21:416–425

    Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  PubMed  CAS  Google Scholar 

  • Curtiss J, Turley RB, Stewart JM, Zhang JF (2011) Identification of differentially expressed genes in semigametic Pima cotton by differential display. Plant Mol Biol Rep. doi:10.1007/s11105-011-0378-2

  • Devor EJ, Huang L, Abdukarimov A, Abdurakhmonov IY (2009) Methodologies for in vitro cloning of small RNAs and application for plant genome(s). Int J Plant Genomics 2009:915061

    PubMed  Google Scholar 

  • Eckardt NA (2005) MicroRNAs regulate auxin homeostasis and plant development. Plant Cell 17:1335–1338

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Khan Barozai MY, Irfan M, Yousaf R, Ali I, Qaisar U, Maqbool A, Zahoor M, Rashid B, Hussnain T, Riazuddin S (2008) Identification of micro-RNAs in cotton. Plant Physiol Biochem 46:739–751

    Article  PubMed  CAS  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucl Acids Res 39(Database Issue):D152–D157

    Article  PubMed  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) From the cover: Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:12753–12758

    Article  PubMed  CAS  Google Scholar 

  • Lai EC (2003) microRNAs: runts of the genome assert themselves. Curr Biol 13:925–936

    Article  Google Scholar 

  • Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ (2005) Elucidation of the Small RNA component of the transcriptome. Science 309:1567–1569

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  PubMed  CAS  Google Scholar 

  • Mlotshwa S, Schauer SE, Smith TH, Mallory AC, Herr JM Jr, Roth B, Merchant DS, Ray A, Bowman LH, Vance VB (2005) Ectopic DICER-LIKE1 expression in P1/HC-Pro Arabidopsis rescues phenotypic anomalies but not defects in microRNA and silencing pathways. Plant Cell 17:2873–2885

    Article  PubMed  CAS  Google Scholar 

  • Pang M, Woodward A, Agarwal V, Guan X, Ha M, Ramachandran V et al (2009) Genome- wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biol 10:R122

    Article  PubMed  Google Scholar 

  • Pang M, Xing C, Adams N, Rodriguez-Uribe L, Hughs SE, Hanson SF, Zhang JF (2011a) Comparative expression of miRNA genes and miRNA-based AFLP marker analysis in cultivated tetraploid cottons. J Plant Physiol 168:824–830

    Article  PubMed  CAS  Google Scholar 

  • Pang MX, Stewart JM, Zhang JF (2011b) A mini-scale hot borate method for the isolation of total RNA from a large number of cotton tissue samples. African J Biotech 10(68):15430–15437

    CAS  Google Scholar 

  • Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    Article  PubMed  CAS  Google Scholar 

  • Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, Yang ZM (2007) Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene 395:49–61

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Ruan MB, Zhao YT, Meng ZH, Wang XJ, Yang WC (2009) Conserved miRNA analysis in Gossypium hirsutum through small RNA sequencing. Genomics 94:263–268

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Deve Cell 8:517–527

    Article  CAS  Google Scholar 

  • Sharma SS, Negi MS, Sinha P, Kumar K (2011) Assessment of genetic diversity of biodiesel species Pongamia pinnata accessions using AFLP and three endonuclease-AFLP. Plant Mol Biol Rep 29:12–18

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijians M, van de Lee T, Hormes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Google Scholar 

  • Vroh-Bi I, Anagbogu C, Nnadi S, Tenkouano A (2011) Genomic characterization of natural and somaclonal variations in bananas (Musa spp.). Plant Mol Biol Rep 29:440–448

    Article  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Ana Biochem 223:7–12

    Article  CAS  Google Scholar 

  • Wang JF, Zhou H, Chen YQ, Luo QJ, Qu LH (2004) Identification of 20 microRNAs from Oryza sativa. Nucl Acids Res 32:1688–1695

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev IA, Fossdal CG, Johnson O (2010) MicroRNAs, the epigenetic memory and climatic adapatation in Norway spruce. New Phytol 187:1154–1169

    Article  PubMed  CAS  Google Scholar 

  • Yang YH, Chen XJ, Chen JY, Xu HX, Li J, Zhang ZY (2011) Identification of novel and conserved microRNAs in Rehmannia glutinosa L. by Solexa sequencing. Plant Mol Biol Rep. doi:10.1007/s11105-011-0293-6

  • Yu Z, Raabe T, Hecht NB (2005) MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 73:427–433

    Article  PubMed  CAS  Google Scholar 

  • Yu SW, Li JJ, Lou LJ (2010) Complexity and specificity of precursor microRNAs driven by transposable elements in rice. Plant Mol Biol Rep 28:502–511

    Article  CAS  Google Scholar 

  • Zhang YJ (2005) miRU: an automated plant miRNA target prediction server. Nucl Acids Res 33:W701–W704

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X (2009) Expression of microRNAs in cotton. Mol Biotechnol 42:269–274

    Article  PubMed  CAS  Google Scholar 

  • Zhang JF, Stewart JM (2000) Economic and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201

    CAS  Google Scholar 

  • Zhang JF, Lu Y, Yu S (2005) Cleaved AFLP (cAFLP), a modified amplified fragment length polymorphism analysis for cotton. Theo Appl Gene 111:1385–1395

    Article  CAS  Google Scholar 

  • Zhang BH, Wang QL, Wang KB, Pan XP, Liu F, Guo TL, Cobb GP, Anderson TA (2007a) Identification of cotton microRNAs and their targets. Gene 397:26–37

    Article  PubMed  CAS  Google Scholar 

  • Zhang JF, Yuan Y, Niu C, Hinchliffe DJ, Lu Y, Yu S, Percy RG, Ulloa M, Cantrell RG (2007b) AFLP-RGA markers in comparison with RGA and AFLP in cultivated tetraploid cotton. Crop Sci 47:180–187

    Article  CAS  Google Scholar 

  • Zhang ZG, Zhang KX, Yang CP, Liu GF, Liu GJ, Lian L, Zhang HG (2010) Genetic linkage maps of Betula platyphylla Suk based on ISSR and AFLP markers. Plant Mol Biol Rep 28:169–175

    Article  Google Scholar 

  • Zhou J, Zhuo RY, Liu MY, Qiao GR, Jiang J, Li HY, Qiu WM, Zhang XG, Lin S (2011) Identification and characterization of novel microRNAs from Populus cathayana Rehd. Plant Mol Biol Rep 29:242–251

    Article  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Mr. Rio Stamler for helping in conducting quantitative PCR. This research was supported in part by grants from Cotton Incorporated, Cary, N.C., USA and the New Mexico Agricultural Experiment Station, NM, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfa Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, M., Hanson, S.F. & Zhang, J. Cloning and Expression Studies of Novel Small RNAs in Tetraploid Cotton. Plant Mol Biol Rep 30, 710–718 (2012). https://doi.org/10.1007/s11105-011-0379-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0379-1

Keywords

Navigation