Skip to main content
Log in

In Silico and Quantitative Analyses of the Putative FLC-like Homologue in Coffee (Coffea arabica L.)

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The sequential pattern of coffee flowering is a major constraint that directly affects productivity, increases harvest costs, and generates a final product of lower quality for mixing dry fruits with ripe and unripe ones. The objective of this work was to identify and analyze one of the main genes involved in flowering regulation, FLOWERING LOCUS C (FLC) in coffee (Coffea arabica L.). The identification of this gene was conducted in silico using a coffee EST database (CAFEST) and bioinformatics tools. Quantitative PCR results suggest that the identified CaFLC-like homologue is directly involved in flowering regulation in coffee. This expands our knowledge on evolutionary conservation of flowering pathways in dicot species. The functional studies of CaFLC-like with mutants of a more tractable species will lead to a better understanding of the molecular regulation as well as the specific functions of each gene flowering during floral induction in coffee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Alvim PT (1960) Moisture stress as a requirement for flowering of coffee. Science 3423(132):354. doi:10.1126/science.132.3423.354

    Article  Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10(1):1–11. doi:10.1186/1471-2199-10-1

    Article  PubMed  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29(3):464–489. doi:10.1016/S1055-7903(03)00207-0

    Article  PubMed  CAS  Google Scholar 

  • Blazquez MA (2000) Flower development pathways. J Cell Sci 113(20):3547–3548

    PubMed  CAS  Google Scholar 

  • Camargo AP (1985) Florescimento e frutificação do café arábica nas diferentes regiões cafeeiras do Brasil. Pesqui Agropecu Bras 20(7):831–839

    Google Scholar 

  • Chalfoun SM (2010) Controle biológico e metabólitos microbianos bioativos: uma perspectiva da qualidade do café. Ciên Agrotec 34(5):1071–1085. doi:10.1590/S1413-70542010000500001

    Article  Google Scholar 

  • Ciannamea S (2007) Molecular characterization of the vernalization response in lolion perenne. Dissertation (PhD in Plant Sciences) Wageningen University

  • Du N, Pijut PM (2010) Isolation and characterization of an AGAMOUS homolog from Fraxinus pennsylvanica. Plant Mol Biol Rep 28(2):344–351. doi:10.1007/s11105-009-0163-7

    Article  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Farnezi MMM, Silva EB, Guimarães PTG, Pinto NAVD (2010) Levantamento da qualidade da bebida do café e avaliação do estado nutricional dos cafeeiros do Alto Jequitinhonha, Minas Gerais, através do DRIS. Ciên Agrotec 34(5):1191–1198. doi:10.1590/S1413-70542010000500016

    Article  Google Scholar 

  • Hou JH, Gao ZH, Zhang Z, Chen SM, Ando T, Zhang JY, Wang XW (2011) Isolation and characterization of an AGAMOUS homologue PmAG from the japanese apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol Rep 29(2):473–480. doi:10.1007/s11105-010-0248-3

    Article  CAS  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290(5490):344–347. doi:10.1126/science.290.5490.344

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Anderson JM, Pijut PM (2010) Cloning and characterization of prunus serotina AGAMOUS, a putative flower homeotic Gene. Plant Mol Biol Rep 28(2):193–203. doi:10.1007/s11105-009-0140-1

    Article  CAS  Google Scholar 

  • Masarirambi MT, Chingwara V, Shongwe VD (2009) The effect of irrigation on synchronization of coffee (Coffea arabica L.) flowering and berry ripening at Chipinge, Zimbabwe. Phys Chem Earth 34(13):786–789. doi:10.1016/j.pce.2009.06.013

    Article  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11(5):949–956. doi:10.1105/tpc.11.5.949

    Article  PubMed  CAS  Google Scholar 

  • Mondego JM, Vidal RO, Carazzolle MF, Tokuda EK, Parizzi LP, Costa GG, Pereira LF, Andrade AC, Colombo CA, Vieira LG, Pereira GA, Genome Project Consortium BC (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11(1):30. doi:10.1186/1471-2229-11-30

    PubMed  CAS  Google Scholar 

  • Morais H, Caramori PH, Koguishi MS, Ribeiro AMA (2008) Escala fenológica detalhada da fase reprodutiva de Coffea arabica. Bragantia 67(1):257–260. doi:10.1590/S0006-87052008000100031

    Article  Google Scholar 

  • Oliveira RR, Chalfun-Junior A, Paiva LV, Andrade AC (2010) In silico and quantitative analyses of MADS-Box genes in Coffea arabica. Plant Mol Biol Rep 28(3):460–472. doi:10.1007/s11105-009-0173-5

    Article  Google Scholar 

  • Privat I, Bardil A, Gomez AB, Severac D, Dantec C, Fuentes I, Mueller L, Joët T, Pot D, Foucrier S, Dussert S, Leroy T, Journot L, de Kochko A, Campa C, Combes MC, Lashermes P, Bertrand B (2011) The ‘PUCE CAFE’ Project: the first 15K coffee microarray, a new tool for discovering candidate genes correlated to agronomic and quality traits. BMC Genomics 12(1):5. doi:10.1186/1471-2164-12-5

    Article  PubMed  CAS  Google Scholar 

  • Reeves PA, He Y, Schimitz RJ, Amasino RM, Panella LM, Richards CM (2007) Evolutionary conservation of the FLC-mediated vernalization response: evidence from the sugarbeet (Beta vulgaris). Genetics 176(1):295–307. doi:10.1534/genetics.106.069336

    Article  PubMed  CAS  Google Scholar 

  • Rena AB, Maestri M (1985) Fisiologia do cafeeiro. Informe Agropecuário Belo Horizonte 11(126):26–40

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Silva FM, Alves MC, Souza JCS, Oliveira MS (2010) Efeitos da colheita manual na bienalidade do cafeeiro em Ijaci, Minas Gerais. Ciên Agrotec 34(3):625–632. doi:10.1590/S1413-70542010000300014

    Article  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the rosetta stone of flowering time. Science 296(5566):285–289. doi:10.1126/science.296.5566.285

    Article  PubMed  CAS  Google Scholar 

  • Sitnikova T, Rzhetsky A, Nei M (1995) Interior-branch and bootstrap tests of phylogenetics trees. Mol Biol Evol 13(4):319–333

    Google Scholar 

  • Song JJ, Ma W, Tang YJ, Chen ZY, Liao JP (2010) Isolation and characterization of three MADS-box genes from Alpinia hainanensis (Zingiberaceae). Plant Mol Biol Rep 28(2):264–276. doi:10.1007/s11105-009-0147-7

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar SH (2007) MEGA4: molecular evolutionary genetics analysis: software: version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Tan FC, Swain SM (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plant 131(3):481–595. doi:10.1111/j.1399-3054.2007.00971.x

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ, Clustal W (1994) Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Google Scholar 

  • Vidal RO, Mondego JMC, Pot D, Ambrosio AB, Andrade AC, Pereira LFP, Colombo CA, Vieira LGE, Carazzolle MF, Pereira GAG (2010) A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea Arabica. Plant Physiol 154(3):1053–1066. doi:10.1104/pp.110.162438

    Article  PubMed  CAS  Google Scholar 

  • Vieira LGE, Andrade AC, Colombo CA, Pereira LFP, Santos SN, Moraes AHA, Metha A, Oliveira AC, Labate CA, Marino CL (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18(1):95–108. doi:10.1590/S1677-04202006000100008

    Article  CAS  Google Scholar 

  • Wang R, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, Alonso-Blanco C, Coupland G, Albani MC (2009) PEP1 regulates perennial flowering in Arabis alpina. Nature 459(7245):423–427. doi:10.1038/nature07988

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Shi J, Xi M, Luo Z, Hu X (2010) A B functional gene cloned from lily encodes an ortholog of Arabidopsis PISTILLATA (PI). Plant Mol Biol Rep 28(4):684–691. doi:10.1007/s11105-010-0193-1

    Article  CAS  Google Scholar 

  • Xu J, Zhong X, Zhang Q, Li H (2010) Overexpression of the GmGAL2 gene accelerates flowering in Arabidopsis. Plant Mol Biol Rep 28(4):704–711. doi:10.1007/s11105-010-0201-5

    Article  CAS  Google Scholar 

  • Yan Z, Liang D, Liu H, Zheng G (2010) FLC: a key regulator of flowering time in Arabidopsis. Russ J Plant Physiol 57(2):166–174. doi:10.1134/S1021443710020020

    CAS  Google Scholar 

  • Zhang JZ, Li ZM, Mei L, Yao JL, Hu CG (2009) PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta 299(4):847–859. doi:10.1007/s00425-008-0885-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Chalfun-Junior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreto, H.G., Lazzari, F., Ságio, S.A. et al. In Silico and Quantitative Analyses of the Putative FLC-like Homologue in Coffee (Coffea arabica L.). Plant Mol Biol Rep 30, 29–35 (2012). https://doi.org/10.1007/s11105-011-0310-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0310-9

Keywords

Navigation