Skip to main content
Log in

Gene Structure Analysis of Rice ADP-ribosylation Factors (OsARFs) and Their mRNA Expression in Developing Rice Plants

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

ADP-ribosylation factors (ARFs) have been widely identified as being involved in regulation of cell differentiation, intracellular vesicle transport, and cytoskeleton organization in animals and plants. To systematically clarify the ARF gene family in rice, eight putative rice ARF genes (OsARFs) were detected by searching the rice genome database. The OsARFs can be classified into class I (OsARFA1a-OsARFA1e) and class II (OsARFB1a-OsARFB1c) by comparing their deduced amino acid sequences with other known ARFs. Most OsARFs are composed of six exons and five introns, though OsARFB1b has three exons and two introns. The OsARFs are usually expressed in various developing organs, whereas OsARFA1a is predominantly expressed in young roots and in caryopses at early development stages. The histochemical localization of OsARFs in various developing organs was confirmed in young leaves, the pericycle of young roots, and the aleurone layer of developing caryopses. Furthermore, the expression of OsARFA1a was confirmed specifically in the aleurone layer and immature embryos of developing caryopses. The present work provides a foundation for further clarifying the physiological functions of OsARFs in rice growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ARFs:

ADP-ribosylation factors

ARLs:

ARF-like proteins

ER:

Endoplasmic reticulum

BFA:

Brefeldin A

RT-PCR:

Reverse transcription polymerase chain reaction

DAH:

Days after heading

GAP:

GTPase-activating protein

GEF:

Guanine nucleotide exchange factor

SNP:

Single nucleotide polymorphism

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  CAS  PubMed  Google Scholar 

  • Amor JC, Harrison DH, Kahn RA, Ringe D (1994) Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372:704–708

    Article  CAS  PubMed  Google Scholar 

  • Antonny B, BeraudDufour S, Chardin P, Chabre M (1997) N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36:4675–4684

    Article  CAS  PubMed  Google Scholar 

  • Asakura Y, Ishigaki E, Sugiyama R, Kurosaki F (2007) Cloning and expression of cDNAs encoding ADP-ribosylation factor in carrot seedling. Plant Sci 172:189–195

    Article  CAS  Google Scholar 

  • Ay N, Clauss K, Barth O, Humbeck K (2008) Identification and characterization of novel senescence-associated genes from barley (Hordeum vulgare) primary leaves. Plant Biol 10:121–135

    Article  CAS  PubMed  Google Scholar 

  • Balch WE, Kahn RA, Schwaninger R (1992) ADP-ribosylation factor is required for vesicular trafficking between the endoplasmic reticulum and the cis-Golgi compartment. J Biol Chem 267:13053–13061

    CAS  PubMed  Google Scholar 

  • Burguete AS, Fenn TD, Brunger AT, Pfeffer SR (2008) Rab and Arl GTPase family members cooperate in the localization of the Golgi GCC185. Cell 132:286–298

    Article  CAS  PubMed  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  CAS  PubMed  Google Scholar 

  • Chardin P, McCormick F (1999) Brefeldin A: the advantage of being uncompetitive. Cell 97:153–155

    Article  CAS  PubMed  Google Scholar 

  • Chavrier P, Goud B (1999) The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol 11:466–475

    Article  CAS  PubMed  Google Scholar 

  • Clark J, Moore L, Krasinskas A, Way J, Battey J, Tamkun J, Kahn RA (1993) Selective amplification of additional members of the ADP-ribosylation factor (ARF) family: cloning of additional human and Drosophila ARF-like genes. Proc Natl Acad Sci U S A 90:8952–8956

    Article  CAS  PubMed  Google Scholar 

  • Coemans B, Takahashi Y, Berberich T, Ito A, Kanzaki H, Matsumura H, Saitoh H, Tsuda S, Kamoun S, Sági L, Swennen R, Terauchi R (2008) High-throughput in planta expression screening identifies an ADP-ribosylation factor (ARF1) involved in non-host resistance and R gene-mediated resistance. Mol Plant Pathol 9:25–36

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Davies C (1994) Cloning and characterization of a tomato GTPase-like gene related to yeast and Arabidopsis genes involved in vesicular transport. Plant Mol Biol 24:525–531

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Okushima Y, Tasaka M (2007) Auxin-mediated lateral root formation in higher plants. Int Rev Cytol 256:111–137

    Article  CAS  PubMed  Google Scholar 

  • Gebbie LK, Burn JE, Hocart CH, Williamson RE (2005) Genes encoding ADP-ribosylation factors in Arabidopsis thaliana L. Heyn.; genome analysis and antisense suppression. J Exp Bot 56:1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Greasley SE, Jhoti H, Teahan C, Solari R, Fensome A, Thomas GMH, Cockcroft S, Bax B (1995) The structure of rat ADP-ribosylation factor-1 (Arf-1) complexed to GDP determined from two different crystal forms. Nat Struct Biol 2:797–806

    Article  CAS  PubMed  Google Scholar 

  • Higo H, Kishimoto N, Saito A, K-i H (1994) Molecular cloning and characterization of a cDNA encoding a small GTP-binding protein related to mammalian ADP-ribosylation factor from rice. Plant Sci 100:41–49

    Article  CAS  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  CAS  PubMed  Google Scholar 

  • Kahn RA, Randazzo P, Serafini T, Weiss O, Rulka C, Clark J, Amherdt M, Roller P, Orci L, Rothman JE (1992) The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport. J Biol Chem 267:13039–13046

    CAS  PubMed  Google Scholar 

  • Kahn RA, Clark J, Rulka C, Stearns T, Zhang CJ, Randazzo PA, Terui T, Cavenagh M (1995) Mutational analysis of Saccharomyces cerevisiae ARF1. J Biol Chem 270:143–150

    Article  CAS  PubMed  Google Scholar 

  • Kahn RA, Volpicelli-Daley L, Bowzard B, Shrivastava-Ranjan P, Li Y, Zhou C, Cunningham L (2005) Arf family GTPases: roles in membrane traffic and microtubule dynamics. Biochem Soc Trans 33:1269–1272

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi-Uehara A, Shimosaka E, Handa H (2001) Cloning and expression analyses of cDNA encoding an ADP-ribosylation factor from wheat: tissue-specific expression of wheat ARF. Plant Sci 160:535–542

    Article  CAS  PubMed  Google Scholar 

  • Lanoix J, Ouwendijk J, Lin CC, Stark A, Love HD, Ostermann J, Nilsson T (1999) GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COPI vesicles. EMBO J 18:4935–4948

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Min MK, Lee YJ, Jin JB, Shin DH, Kim DH, Lee KH, Hwang I (2002) ADP-ribosylation factor 1 of Arabidopsis plays a critical role in intracellular trafficking and maintenance of endoplasmic reticulum morphology in Arabidopsis. Plant Physiol 129:1507–1520

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Huang PH, Liao WL, Cheng HJ, Huang CF, Kuo JC, Patton WA, Massenburg D, Moss J, Lee FJ (2000) ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J Biol Chem 275:37815–37823

    Article  CAS  PubMed  Google Scholar 

  • Ma QH (2007) Small GTP-binding proteins and their functions in plants. J Plant Growth Regul 26:369–388

    Article  CAS  Google Scholar 

  • Matheson LA, Hanton SL, Rossi M, Latijnhouwers M, Stefano G, Renna L, Brandizzi F (2007) Multiple roles of ADP-ribosylation factor 1 in plant cells include spatially regulated recruitment of coatomer and elements of the Golgi matrix. Plant Physiol 143:1615–1627

    Article  CAS  PubMed  Google Scholar 

  • McElver J, Patton D, Rumbaugh M, Liu CM, Yang LJ, Meinke D (2000) The TITAN5 gene of Arabidopsis encodes a protein related to the ADP ribosylation factor family of GTP binding proteins. Plant Cell 12:1379–1392

    Article  CAS  PubMed  Google Scholar 

  • McNally KL, Bruskiewich R, Mackill D, Buell CR, Leach JE, Leung H (2006) Sequencing multiple and diverse rice varieties. Connecting whole-genome variation with phenotypes. Plant Physiol 141:26–31

    Article  CAS  PubMed  Google Scholar 

  • Moss J, Vaughan M (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270:12327–12330

    Article  CAS  PubMed  Google Scholar 

  • Moss J, Vaughan M (1998) Molecules in the ARF orbit. J Biol Chem 273:21431–21434

    Article  CAS  PubMed  Google Scholar 

  • Mossessova E, Gulbis JM, Goldberg J (1998) Structure of the guanine nucleotide exchange factor Sec7 domain of human Arno and analysis of the interaction with ARF GTPase. Cell 92:415–423

    Article  CAS  PubMed  Google Scholar 

  • Nebenfuhr A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol 130:1102–1108

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    Article  CAS  PubMed  Google Scholar 

  • Pimpl P, Movafeghi A, Coughlan S, Denecke J, Hillmer S, Robinson DG (2000) In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell 12:2219–2236

    Article  CAS  PubMed  Google Scholar 

  • Pimpl P, Hanton SL, Taylor JP, Pinto-daSilva LL, Denecke J (2003) The GTPase ARF1p controls the sequence-specific vacuolar sorting route to the lytic vacuole. Plant Cell 15:1242–1256

    Article  CAS  PubMed  Google Scholar 

  • Presley JF, Ward TH, Pfeifer AC, Siggia ED, Phair RD, Lippincott-Schwartz J (2002) Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417:187–193

    Article  CAS  PubMed  Google Scholar 

  • Schekman R, Orci L (1996) Coat proteins and vesicle budding. Science 271:1526–1533

    Article  CAS  PubMed  Google Scholar 

  • Stearns T, Kahn RA, Botstein D, Hoyt MA (1990) ADP ribosylation factor is an essential protein in Saccharomyces cerevisiae and is encoded by two genes. Mol Cell Biol 10:6690–6699

    CAS  PubMed  Google Scholar 

  • Susan RM, CGSNL (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  • Takeuchi M, Ueda T, Yahara N, Nakano A (2002) Arf1 GTPase plays roles in the protein traffic between the endoplasmic reticulum and the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J 31:499–515

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T, Aono R, Fujii Y, Habara T, Harada E, Kanno M, Kawahara Y, Kawashima H, Kubooka H, Matsuya A, Nakaoka H, Saichi N, Sanbonmatsu R, Sato Y, Shinso Y, Suzuki M, Takeda J, Tanino M, Todokoro F, Yamaguchi K, Yamamoto N, Yamasaki C, Imanishi T, Okido T, Tada M, Ikeo K, Tateno Y, Gojobori T, Lin YC, Wei FJ, Hsing YI, Zhao Q, Han B, Kramer MR, McCombie RW, Lonsdale D, O’Donovan CC, Whitfield EJ, Apweiler R, Koyanagi KO, Khurana JP, Raghuvanshi S, Singh NK, Tyagi AK, Haberer G, Fujisawa M, Hosokawa S, Ito Y, Ikawa H, Shibata M, Yamamoto M, Bruskiewich RM, Hoen DR, Bureau TE, Namiki N, Ohyanagi H, Sakai Y, Nobushima S, Sakata K, Barrero RA, Souvorov A, Smith-White B, Tatusova T, An S, An G, OO S, Fuks G, Messing J, Christie KR, Lieberherr D, Kim H, Zuccolo A, Wing RA, Nobuta K, Green PJ, Lu C, Meyers BC, Chaparro C, Piegu B, Panaud O, Echeverria M (2008) The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033

    CAS  PubMed  Google Scholar 

  • Thiel G, Battey N (1998) Exocytosis in plants. Plant Mol Biol 38:111–125

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya M, Price SR, Tsai SC, Moss J, Vaughan M (1991) Molecular identification of ADP-ribosylation factor mRNAs and their expression in mammalian cells. J Biol Chem 266:2772–2777

    CAS  PubMed  Google Scholar 

  • Tzafrir I, McElver JA, Liu CM, Yang LJ, Wu JQ, Martinez A, Patton DA, Meinke DW (2002) Diversity of TITAN functions in Arabidopsis seed development. Plant Physiol 128:38–51

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan C, Han W, Tan Y, Nie Y, Li D, Shome K, Watkins SC, Levitan ES, Romero G (1998) The distribution and translocation of the G protein ADP-ribosylation factor 1 in live cells is determined by its GTPase activity. J Cell Sci 111:1277–1285

    CAS  PubMed  Google Scholar 

  • Veltel S, Kravchenko A, Ismail S, Wittinghofer A (2008) Specificity of Arl2/Arl3 signaling is mediated by a ternary Arl3-effector-GAP complex. FEBS Lett 582:2501–2507

    Article  CAS  PubMed  Google Scholar 

  • Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  CAS  PubMed  Google Scholar 

  • Verwoert I, Brown A, Slabas AR, Stuitje AR (1995) A Zea mays GTP-binding protein of the ARF family complements an Escherichia coli mutant with a temperature-sensitive malonyl-coenzyme A:acyl carrier protein transacylase. Plant Mol Biol 27:629–633

    Article  CAS  PubMed  Google Scholar 

  • Vitale N, Moss J, Vaughan M (1997) Interaction of the GTP-binding and GTPase-activating domains of ARD1 involves the effector region of the ADP-ribosylation factor domain. J Biol Chem 272:3897–3904

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Scheres B (2005) Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17:525–536

    Article  CAS  PubMed  Google Scholar 

  • Xu YY, Chong K, Xu ZH, Tan KH (2001) Expression patterns of a vernalization-related genes responding to jasmonate. J Integr Plant Biol 43:871–873

    CAS  Google Scholar 

  • Zhou CJ, Cunningham L, Marcus AI, Li YW, Kahn RA (2006) Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 17:2476–2487

    Article  CAS  PubMed  Google Scholar 

  • Zuk M, Prescha A, Kepczyński J, Szopa J (2003) ADP ribosylation factor regulates metabolism and antioxidant capacity of transgenic potato tubers. J Agric Food Chem 51:288–294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant 30570148) and Project 973 from the Ministry of Science and Technology of China (grant 2005CB120803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingdian Wang.

Additional information

Xiaojin Zhou and Jie Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Li, J., Cheng, W. et al. Gene Structure Analysis of Rice ADP-ribosylation Factors (OsARFs) and Their mRNA Expression in Developing Rice Plants. Plant Mol Biol Rep 28, 692–703 (2010). https://doi.org/10.1007/s11105-010-0200-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0200-6

Keywords

Navigation