Skip to main content
Log in

A hyperaccumulator plant Sedum alfredii recruits Cd/Zn-tolerant but not Pb-tolerant endospheric bacterial communities from its rhizospheric soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

For a metal hyperaccumulator plant Sedum alfredii, the recruitment of unique rhizospheric bacterial communities from bulk soils has been well studied. However, in the root-soil interface, the knowledge on the establishment of endospheric microbiomes from rhizospheric soil is still scarce.

Methods

In this study, we combined culture-independent that was 16S rRNA gene amplicon sequencing, and culture-dependent methods that included bacterial isolation, heavy metal tolerance and plant growth-promoting traits.

Results

The Cd/Zn concentrations in endosphere were significantly higher than in soil, while Pb concentration in endosphere was significantly lower than in soil. The α-diversity in rhizosphere soils was higher than in root endosphere, and the compartments as a major determinant revealed 85.9% of the taxa variations. The relative abundance of Proteobacteria increased in endosphere compared to rhizosphere. The difference of Cd/Zn tolerance between endospheric and rhizospheric isolates was not obvious, while the Pb tolerance of endospheric isolates significantly decreased compared to rhizosphere.

Conclusions

The results suggest that S. alfredii recruits Cd/Zn-tolerant but not Pb-tolerant endospheric bacterial communities from its rhizospheric soil. The difference in the microbial structure and function in the root-soil interface might be related to the selective absorption of metals in S. alfredii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bai Y, Müller D, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch P, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy A, Vorholt J, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    CAS  PubMed  Google Scholar 

  • Barret M, Briand M, Bonneau S, Preveaux A, Valiere S, Bouchez O, Hunault G, Simoneau P, Jacques M (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81:1257–1266

    PubMed  PubMed Central  Google Scholar 

  • Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25

    PubMed  PubMed Central  Google Scholar 

  • Bolyen E, Rideout J, Dillon M et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotech 37:848–857

    Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren Van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner F, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Ver L, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    CAS  PubMed  Google Scholar 

  • Cao X, Wang X, Tong W, Gurajala H, Lu M, Hamid Y, Feng Y, He Z, Yang X (2019) Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ Pollut 252:733–741

    CAS  PubMed  Google Scholar 

  • Cao X, Luo J, Wang X, Chen Z, Liu G, Khan M, Kang K, Feng Y, He Z, Yang X (2020) Responses of soil bacterial community and cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Sci Total Environ 723:138152

    CAS  PubMed  Google Scholar 

  • Castrillo G, Teixeira P, Paredes S, Law T, Lorenzo L, Feltcher M, Finkel O, Breakfield N, Mieczkowski P, Jones C, Paz-ares J, Dangl J (2017) Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cernava T, Erlacher A, Soh J, Sensen C, Grube M, Berg G (2019) Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.). Microbiome 7:13

    PubMed  PubMed Central  Google Scholar 

  • Chen B, Zhang Y, Rafiq M, Khan K, Pan F, Yang X, Feng Y (2014) Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117:367–373

    CAS  PubMed  Google Scholar 

  • Chen B, Luo S, Wu Y, Ye J, Wang Q, Xu X, Pan F, Khan K, Feng Y, Yang X (2017) The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front Microbiol 8:2538

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Ding Q, Chao Y, Wei X, Wang S, Qiu R (2018) Structural development and assembly patterns of the root-associated microbiomes during phytoremediation. Sci Total Environ 644:1591–1601

    CAS  PubMed  Google Scholar 

  • Dominguez-Bello M, Costello E, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Nati Acad Sci USA 107:11971–11975

    Google Scholar 

  • Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, Hacquard S (2018) Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175:973–983

    PubMed  PubMed Central  Google Scholar 

  • Edgar R (2013) UPARSE highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    CAS  PubMed  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty N, Bhatnagar S, Eisen J, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Nati Acad Sci USA 112:E911–E920

    CAS  Google Scholar 

  • Gottel N, Castro H, Kerley M, Yang Z, Pelletier D, Podar M, Karpinets T, Uberbacher E, Tuskan G, Vilgalys R, Doktycz M, Schadt C (2011) Distinct microbial communitieswithin the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant C, Clarke J, Duguid S, Chaney R (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310

    CAS  PubMed  Google Scholar 

  • Hou D, Wang K, Liu T, Wang H, Lin Z, Qian J, Lu L, Tian S (2017) Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii. Environ Sci Technol 51:5675–5684

    CAS  PubMed  Google Scholar 

  • Hou D, Lin Z, Wang R, Ge J, Wei S, Xie R, Wang H, Wang K, Hu Y, Yang X, Lu L, Tian S (2018) Cadmium exposure-Sedum alfredii planting interactions shape the bacterial community in the hyperaccumulator plant rhizosphere. Appl Environ Microbiol 84:e02797–e02717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Tian S, Foyer C, Hou D, Wang H, Zhou W, Liu T, Ge J, Lu L, Lin X (2019) Efficient phloem transport significantly remobilizes cadmium from old to young organs in a hyperaccumulator Sedum alfredii. J Hazard Mater 365:421–429

    CAS  PubMed  Google Scholar 

  • Huang A, Jiang T, Liu Y, Bai Y, Reed J, Qu B, Goossens A, Nützmann H, Bai Y, Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364:u6389

    Google Scholar 

  • Huang L, Wang Q, Zhou Q, Ma L, Wu Y, Liu Q, Wang S, Feng Y (2020) Cadmium uptake from soil and transport by leafy vegetables: a meta-analysis. Environ Pollut 264:114677

    CAS  PubMed  Google Scholar 

  • Hussain B, Lin Q, Hamid Y, Sanaullah M, Di L, Hashmi MLUR, Khan MB, He Z, Yang X (2020) Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci Total Environ 712:136497

    CAS  PubMed  Google Scholar 

  • Johnston-Monje D, Lundberg D, Lazarovits G, Reis V, Raizada M (2016) Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405:337–355

    CAS  Google Scholar 

  • Kabagale A, Cornu B, Vliet F, Meyer C, Mergeay M, Simbi J, Droogmans L, Wauven C, Verbruggen N (2010) Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant Soil 334:461–474

    Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    PubMed  Google Scholar 

  • Larousse M, Rancurel C, Syska C, Palero F, Etienne C, Industri B, Nesme X, Bardin M, Galiana E (2017) Tomato root microbiota and Phytophthora parasitica-associated disease. Microbiome 5:56

    PubMed  PubMed Central  Google Scholar 

  • Lebeis S (2014) The potential for give and take in plant-microbiome relationships. Front Plant Sci 5:287

    PubMed  PubMed Central  Google Scholar 

  • Lebeis S, Rott M, Dangl J, Schulze-Lefert P (2012) Culturing a plant microbiome community at the cross-Rhodes. New Phytol 196:341–344

    PubMed  Google Scholar 

  • Lebeis S, Paredes S, Lundberg D, Breakfield N, Gehring J, McDonald M, Malfatti S, Rio T, Jones C, Tringe S, Dangl J (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    CAS  PubMed  Google Scholar 

  • Li J, Gurajala H, Wu L, van der Ent A, Qiu R, Baker A, Tang Y, Yang X, Shu W (2018) Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environ Sci Technol 52:11980–11994

    CAS  PubMed  Google Scholar 

  • Liu M, He X, Feng T, Zhuo R, Qiu W, Han X, Qiao G, Zhang D (2019) cDNA library for mining functional genes in Sedum alfredii Hance related to cadmium tolerance and characterization of the roles of a novel SaCTP2 gene in enhancing cadmium hyperaccumulation. Environ Sci Technol 53:10926–10940

    CAS  PubMed  Google Scholar 

  • Lopes K, Carpentieri-Pipolo V, Oro T, Pagliosa E, Degrassi G (2016) Culturable endophytic bacterial communities associated with field-grown soybean. J Appl Microbiol 120:740–755

    Google Scholar 

  • Lundberg D, Lebeis S, Paredes S, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Rio T, Edgar R, Eickhorst T, Ley R, Hugenholtz P, Tringe S, Dangl J (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S, Chen L, Chen J, Xiao X, Xu T, Wan Y, Rao C, Liu C, Liu Y, Lai C, Zeng G (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    CAS  PubMed  Google Scholar 

  • Luo J, Tao Q, Wu K, Li J, Qian J, Liang Y, Yang X, Li T (2017) Structural and functional variability in root-associated bacterial microbiomes of cd/Zn hyperaccumulator Sedum alfredii. Appl Microbiol Biotechnol 101:7961–7976

    CAS  PubMed  Google Scholar 

  • Luo J, Tao Q, Jupa R, Liu Y, Wu K, Song Y, Li J, Huang Y, Zou L, Liang Y, Li T (2019a) Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii. Environ Sci Technol 53:6954–6963

    CAS  PubMed  Google Scholar 

  • Luo J, Liu Y, Tao Q, Hou Q, Wu K, Song Y, Liu Y, Guo X, Li J, Hashmi M, Liang Y, Li T (2019b) Successive phytoextraction alters ammonia oxidation and associated microbial communities in heavy metal contaminated agricultural soils. Sci Total Environ 664:616–625

    CAS  PubMed  Google Scholar 

  • Magoč T, Salzberg S (2011) FLASH fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    PubMed  PubMed Central  Google Scholar 

  • Massoni J, Bortfeld-Miller M, Jardillier L, Salazar G, Sunagawa S, Vorholt J (2020) Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J 14:245–258

    CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers J (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    CAS  PubMed  Google Scholar 

  • Mitter E, de Freitas J, Germida J (2017) Bacterial root microbiome of plants growing in oil sands reclamation covers. Front Microbiol 8:849

    PubMed  PubMed Central  Google Scholar 

  • Muehe E, Weigold P, Adaktylou I, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S (2015) Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 81:2173–2181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu B, Paulson J, Zheng X, Kolter R (2017) Simplified and representative bacterial community of maize roots. Proc Nati Acad Sci USA 114:E2450–E2459

    CAS  Google Scholar 

  • Palmer C, Bik E, DiGiulio D, Relman D, Brown P (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    PubMed  PubMed Central  Google Scholar 

  • Penrose D, Glick B (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    CAS  PubMed  Google Scholar 

  • Perez-Jaramillo J, Carrion V, Bosse M, Ferrao L, de Hollander M, Garcia A, Ramirez C, Mendes R, Raaijmakers J (2017) Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. The ISME Journal 11:2244–2257

    PubMed  PubMed Central  Google Scholar 

  • Plociniczak T, Choclor M, Pacwa-Plociniczak M, Piotrowska-Seget Z (2019) Metal-tolerant endophytic bacteria associated with Silene vulgaris support the Cd and Zn phytoextraction in non-host plants. Chemosphere 219:250–260

    CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner F (2013) The SILVA ribosomal RNA gene database project improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    CAS  PubMed  Google Scholar 

  • Rehman M, Zafar M, Waris A, Rizwan M, Ali S, Sabir M, Usman M, Ayub M, Ahmad Z (2020) Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere 244:125548

    CAS  PubMed  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH a versatile open source tool for metagenomics. PeerJ 4:e2584

    PubMed  PubMed Central  Google Scholar 

  • Roman-Ponce B, Ramos-Garza J, Vasquez-Murrieta M, Rivera-Orduna F, Chen W, Yan J, Estrada-de los Santos P, Wang E (2016) Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants. Arch Microbiol 198:941–956

    CAS  PubMed  Google Scholar 

  • Sarwar M, Kremer R (1995) Enhanced suppression of plant-growth through production of L-tryptophan-derived compounds by deleteriou rhizobacteria. Plant Soil 172:261–269

    CAS  Google Scholar 

  • Schwyn B, Neilands J (1987) Universal chemical-assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    CAS  PubMed  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel W, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin M, Shim J, You Y, Myung H, Bang K, Cho M, Kamala-Kannan S, Oh B (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199-200:314–320

    CAS  PubMed  Google Scholar 

  • Tao Q, Zhao J, Li J, Liu Y, Luo J, Yuan S, Li B, Li Q, Xu Q, Yu X, Huang H, Li T, Wang C (2020) Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii. J Hazard Mater 383:121177

    CAS  PubMed  Google Scholar 

  • Tian S, Xie R, Wang H, Hu Y, Hou D, Liao X, Brown P, Yang H, Lin X, Labavitch J, Lu L (2017) Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii. J Exp Bot 68:2387–2398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tkacz A, Cheema J, Chandra G, Grant A, Poole P (2015) Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. The ISME Journal 9:2349–2359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner T, James E, Poole P (2013) The plant microbiome. Genome Biol 14:209

    PubMed  PubMed Central  Google Scholar 

  • Ullah I, Al-Johny B, AL-Ghamdi K, Al-Zahrani H, Anwar Y, Firoz A, AL-Kenani N, Almatry M (2019) Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesis by sodA gene. Ecotoxicol Environ Saf 174:197–207

    CAS  PubMed  Google Scholar 

  • Veach A, Morris R, Yip D, Yang Z, Engle N, Cregger M, Tschaplinski T, Schadt C (2019) Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome 7:76

    PubMed  PubMed Central  Google Scholar 

  • Visioli G, D'Egidio S, Sanangelantoni A (2015) The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. Front Plant Sci 5:752

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Ge C, Xu S, Wu Y, Sahito Z, Ma L, Pan F, Zhou Q, Huang L, Feng Y, Yang X (2020a) The endophytic bacterium Sphingomonas SaMR12 alleviates Cd stress in oilseed rape through regulation of the GSH-AsA cycle and antioxidative enzymes. BMC Plant Biology 20:63

  • Wang X, Wang M, Xie X, Guo S, Zhou Y, Zhang X, Yu N, Wang E (2020b) An amplification-selection model for quantified rhizosphere microbiota assembly. Sci Bull 65:983–986

  • Wang R, Hou D, Li J, Chen J, Fu Y, Wang S, Zheng W, Lu L, Tian S (2020c) Distinct rhizobacterial functional assemblies assist two Sedum alfredii ecotypes to adopt different survival strategies under lead stress. Environ Int 143:105912

  • Wu Y, Ma L, Liu Q, Sikder M, Vestergård M, Zhou K, Wang Q, Yang X, Feng Y (2020a) Pseudomonas fluorescens promote photosynthesis, carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii. Sci Total Environ 726:138554

    CAS  PubMed  Google Scholar 

  • Wu Y, Ma L, Liu Q, Vestergård M, Topalovic O, Wang Q, Zhou Q, Huang L, Yang X, Feng Y (2020b) The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. J Hazard Mater 395:122661

    CAS  PubMed  Google Scholar 

  • Wu Y, Ma L, Liu Q, Topalovic O, Wang Q, Yang X, Feng Y (2020c) Pseudomonas fluorescens accelerates a reverse and long-distance transport of cadmium and sucrose in the hyperaccumulator plant Sedum alfredii. Chemosphere 256:127156

    CAS  PubMed  Google Scholar 

  • Xia Y, Mucci C, Williams M, Debolt S (2013) Characterization of culturable bacterial endophytes of switchgrass (Panicum virgatum L.) and their capacity to influence plant growth. Phytopathology 103:163–163

    Google Scholar 

  • Xv L, Ge J, Tian S, Wang H, Yu H, Zhao J, Lu L (2020) A cd/Zn co-hyperaccumulator and Pb accumulator, Sedum alfredii, is of high cu tolerance. Environ Pollut 263:114401

    CAS  PubMed  Google Scholar 

  • Yang X, Long X, Ye H, He Z, Calvert D, Stoffella P (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh B, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    CAS  PubMed  Google Scholar 

  • Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S (2016) Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Nati Acad Sci USA 113:E7996–E8005

    CAS  Google Scholar 

  • Zhalnina K, Louie K, Hao Z, Mansoori N, Da Rocha U, Shi S, Cho H, Karaoz U, Loqué D, Bowen B, Firestone M, Northen T, Brodie E (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480

    CAS  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim M, Kornyeyev D, Holaday S, Paré P (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    CAS  PubMed  Google Scholar 

  • Zhang W, Huang Z, He L, Sheng X (2012) Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead–zinc mine tailings. Chemosphere 87:1171–1178

    CAS  PubMed  Google Scholar 

  • Zhang Y, Xu J, Riera N, Jin T, Li J, Wang N (2017) Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 5:97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu Y, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G, Yuan L, Garrido-Oter R, Chu C, Bai Y (2019) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotech 37:676–684

    CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (No. 41771345) and the Fundamental Research Funds for the Central Universities (2020FZZX001-06) financially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Feng.

Additional information

Responsible Editor: Antony Van der Ent.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Ma, L., Zhang, X. et al. A hyperaccumulator plant Sedum alfredii recruits Cd/Zn-tolerant but not Pb-tolerant endospheric bacterial communities from its rhizospheric soil. Plant Soil 455, 257–270 (2020). https://doi.org/10.1007/s11104-020-04684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04684-0

Keywords

Navigation