Skip to main content

Advertisement

Log in

Productivity limiting impacts of boron deficiency, a review

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

In the almost century since the establishment of boron (B) as an essential plant nutrient, its roles in plant growth and development have been identified, and the mechanism for B transportation explained.

Scope

This review relates the yield response of crops, measured as B efficiency i.e. productivity when B is limiting relative to when it is not, to the B supply logistics and requirement of different tissues and organs.

Conclusions

Yield is depressed by B deficiency in graminaceous cereals primarily by impaired development and function of the stamen and pistil, but in dicots the adverse effects are expressed as structural damage to various organs. Boron-efficient cereal genotypes are readily identifiable by their successful grain set under limited B, while the quantitative trait loci associated with B efficiency provide a useful selection tool for dicots. The relevance to breeding for B efficiency of the numerous BOR1 and NIP genes controlling active B transport identified in many crops will depend on how close their up-regulation in a deficiency is associated with B efficiency. Understanding of the yield impact of B deficiency is useful in dealing with crop choice and the management of germplasm and B fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed M, Jahiruddin M, Jamjod S, Rerkasem B (2002) Boron efficiency in a wheat germplasm from Bangladesh. In: Goldbach HE, Rerkasem B, Wimmer MA, Brown PH, Thellier M, Bell RW (eds) All aspects of plant and animal boron nutrition. Kluwer and Plenum Academic Publishers, Dordrecht, pp 299–303

    Google Scholar 

  • Ahmed M, Jahiruddin M, Mian MH (2007) Screening of wheat genotypes for boron efficiency. J Plant Nutr 30:1127–1138

    CAS  Google Scholar 

  • Agrawala SC, Sharma PN, Chatterjee C, Sharma CP (1981) Development and enzymatic change during pollen development in boron deficiency maize plants. J Plant Nutr 3:329–336

    Google Scholar 

  • Alva O, Roa-Roco RN, Pérez-Díaz R, Yáñez M, Tapia J, Moreno Y, Ruiz-Lara S, González E (2015) Pollen morphology and boron concentration in floral tissues as factors triggering natural and GA-induced parthenocarpic fruit development in grapevine. PLoS One 10:e0139503

    PubMed  PubMed Central  Google Scholar 

  • Ambak K, Tadano T (1991) Effect of micronutrient application on the growth and occurrence of sterility in barley and rice in a Malaysian deep peat soil. Soil Sci Plant Nutr 37:715–724

    CAS  Google Scholar 

  • Asad A, Bell RW, Dell B (2001) A critical comparison of the external and internal boron requirements for contrasting species in boron-buffered solution culture. Plant Soil 233:31–45

    CAS  Google Scholar 

  • Askew HO, Chittenden E, Thomson RHK (1936) The use of borax in the control of internal cork of apple. N Z J Sci Technol 18:365–380

    Google Scholar 

  • Atkinson C, Else M (2001) Understanding how rootstocks dwarf fruit trees. Compact Fruit Tree 34:46–49

    Google Scholar 

  • Baker AS, Mortensen WP (1966) Residual effect of single borate application on Western Washington soils. Soil Sci 102:173–179

    CAS  Google Scholar 

  • Bell RW (1997) Diagnosis and prediction of boron deficiency for plant production. Plant Soil 193:149–168

    CAS  Google Scholar 

  • Bell RW, Dell B (2008) Micronutrients for sustainable food, feed, fibre and bioenergy production. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Bell RW, McLay L, Plaskett D, Dell B, Loneragan JF (1989) Germination and vigour of black gram (Vigna mungo (L.) Hepper) seed from plants grown with and without boron. Aust J Agric Res 40:273–279

    CAS  Google Scholar 

  • Bell RW, McLay L, Plaskett D, Dell B, Loneragan JF (1990) Internal boron requirements of green gram. In: van Beusichem ML (ed) Dev Plant Soil Sci 41. Kluwer Academic Publishers, the Netherlands, pp 275–280

    Google Scholar 

  • Bergmann W (ed) (1992) Nutritional disorders of plants. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Blamey FPC, Edwards DG, Asher CJ (1987) Nutritional disorders of sunflower. Department of Agriculture, University of Queensland, Australia, 72 p

    Google Scholar 

  • Blevins DG, Lukaszewski M (1998) Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49:481–500

    CAS  PubMed  Google Scholar 

  • Bohnsack CW, Albert LS (1977) Early effects of boron deficiency on indoleacetic acid oxidase levels of squash root tips. Plant Physiol 59:1047–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V (2002) Boron in plant biology. Plant Biol 4:205–223

    CAS  Google Scholar 

  • Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:85–101

    CAS  Google Scholar 

  • Cakmak I, Römheld V (1997) Boron deficiency-induced impairments of cellular functions in plants. Plant Soil 193:71–83

    CAS  Google Scholar 

  • Ceyhan E, Önder M, Harmankaya M, Hamurcu M, Gezgin S (2007) Response of chickpea cultivars to application of boron in boron-deficient calcareous soils. Commun Soil Sci Plant Anal 38:2381–2399

    CAS  Google Scholar 

  • Chatterjee M, Tabi Z, Galli M, Malcomber S, Buck A, Muszynski M, Gallavotti A (2014) The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell 26:2962–2977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Rerkasem B (1993) Effects of boron on pollen viability in wheat. Plant Soil 155(156):313–315

    Google Scholar 

  • Christensen LP, Beede RH, Peacock WL (2006) Fall foliar sprays prevent boron-deficiency symptoms in grapes. Calif Agric 60:100–103

    Google Scholar 

  • Chrudimsky WW, Morrill LG (1973) Uptake and distribution of boron in Spanish peanuts. Agron J 65:63–66

    CAS  Google Scholar 

  • Cohen MS, Lepper R Jr (1977) Effects of boron on cell elongation and division in squash roots. Plant Physiol 59:884–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craswell ET, Loneragan JF, Keerati-Kasikorn P (1985) Mineral constraints to food legume crop production in Asia. In: Wallis ES, Byth DE (eds) Food legume improvement in Asian farming systems, ACIAR proceedings no. 18. Australian Centre for Agricultural Research, Canberra, pp 99–111

    Google Scholar 

  • da Silva AR, de Andrade JMV (1983) Efeito micronutrientes no chochamento do trigo de seqqueiro e nas culturas de soja e arroz, em latossolo vermelho-amarelo [influence of micronutrients on the male sterility, on upland wheat and on rice and soybean yields, in red-yellow latosol]. Pesq Agropec Bras Brasilia 18:593–601 (in Portuguese with English abstract)

    CAS  Google Scholar 

  • Dannel F, Pfeffer H, Römheld V (1998) Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. Plant Physiol 153:615–622

    CAS  Google Scholar 

  • Dear BS, Lipsett J (1987) The effect of boron supply on the growth and seed production of subterranean clover (Trifolium subterraneum L.). Aust J Agric Res 38:537–546

    CAS  Google Scholar 

  • Dell B, Brown PH, Bell RW (eds) (1997) Boron in soils and plants: reviews. Plant Soil 193:1–208

  • Dell B, Huang L (1997) Physiological response of plants to low boron. Plant Soil 193:103–120

    CAS  Google Scholar 

  • Dell B, Malajczuk N, Xu D, Grove TS (2001) Nutrient disorders in plantation eucalypts, 2nd edn., ACIAR monograph no. 74. ACIAR, Canberra

    Google Scholar 

  • Dell B, Thu PQ (2009) Sustainable management of plantation eucalypts and acacias in Asia. In: Diloksumpun S, Puangchit L (eds) Tropical forestry change in a changing world, commercial plantation forestry. Kasetsart University, Bangkok, pp 49–63

    Google Scholar 

  • Dennis FG Jr (2000) The history of fruit thinning. Plant Growth Regul 31:1–16

    CAS  Google Scholar 

  • Diener UL, Davis ND (1969) Aflatoxin formation by Aspergillus flavus. In: Goldblatt, L.A. (ed), Aflatoxin, Amsterdam, Netherlands, pp. 13–54

  • Dong R (1997) Effects of boron on apple yield and fruit quality. MSc. Thesis (Agronomy), Graduate School, Chiang Mai University, Thailand

  • Dong RH, Noppakoonwong RN, Song XM, Rerkasem B (1997) Boron and fruit quality of apple. In: Bell RW, Rerkasem B (eds) Boron in soils and plants, Dev. Plant Soil Sci. 76. Kluwer Academic Publishers, Dordrecht, pp 125–130

    Google Scholar 

  • Dumont M, Lehner A, Bouton S, Kiefer-Meyer MC, Voxeur A, Pelloux J, Lerouge P, Mollet J (2014) The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. Ann Bot 114:1177–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durbak AR, Phillips KA, Pike S, O’Neill MA, Mares J, Gallavotti A, McSteen P (2014) Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 26:2978–2995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez PG, Baudin CG, Esquinas TM, Vara JMM (1985) Boron deficiency in sunflowers in Spain. In: Proc. XI Int. Sunflower Conf., Mar Del Plata, Argentina, Borax Holdings Ltd, London, pp. 1–8

  • Freeman M, Uriu K, Hartmann HT (1994) Diagnosing and correcting nutrient problems. In: Sibbett GS, Ferguson L (eds), Olive production manual, University of California Publication 3353. Berkeley, pp. 83–92

  • García-Hernández ER, López GIC (2005) Structural cell wall proteins from five pollen species and their relationship with boron. Braz J Plant Physiol 17:375–381

    Google Scholar 

  • Garg OK, Sharma AN, Kona GRSS (1979) Effect of boron on the pollen vitality and yield of rice plants (Oryza sativa L. var. Jaya). Plant Soil 52:591–594

    Google Scholar 

  • Gartel W (1974) Die mikronährstoffe- ihre Bedeutung für die Rebenernahrung unter besonderer Berücksichtigung der Managel- und Ueberschusserscheinungen. Weinberg Keller 10–11:435–449

    Google Scholar 

  • Graham RD (1984) Breeding for nutritional characteristics in cereals. Adv Plant Nutr 1:57–102

    Google Scholar 

  • Gupta UC (1980) Boron nutrition of crops. Adv Agron 31:273–307

    Google Scholar 

  • Haas ARC (1945) Boron in citrus trees. Plant Physiol 20:323–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Farhanghi F (2011) Effect of low boron supply in turnip plants under drought stress. Biol Plant 55:775–778

    CAS  Google Scholar 

  • Hanaoka H, Uraguchi S, Takano J, Tanaka M, Fujiwara T (2014) OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J 78:890–902

    CAS  PubMed  Google Scholar 

  • Harris HC, Gilman RL (1957) Effect of boron on peanuts. Soil Sci 84:233–242

    CAS  Google Scholar 

  • Hill WE, Morrill LG (1974) Assessing boron needs for improving peanut yield and quality. Soil Sci Soc Am Proc 38:791–794

    CAS  Google Scholar 

  • Hirsch AM, Torrey JG (1980) Ultrastructural changes in sunflower root cells in relation to boron deficiency and added auxin. Can J Bot 58:856–866

    CAS  Google Scholar 

  • Ho SB (2000) Boron deficiency of crops in Taiwan. Food and Fertilizer Technology Center Extension Bulletin

  • Holley KT, Dulin TG (1939) Influence of boron on flower-bud development in cotton. J Agric Res 59:541–545

    CAS  Google Scholar 

  • Hu H, Brown PK (1994) Localisation of boron in cell walls of squash and tobacco and its association with pectin. Plant Physiol 105:681–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Brown PK (1997) Absorption of boron by plant roots. Plant Soil 193:49–58

    CAS  Google Scholar 

  • Hua YP, Zhang DD, Zhou T, He ML, Ding GD, Shi L, Xu FS (2016) Transcriptomics assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed. Plant Cell Environ 39:1601–1618

    CAS  PubMed  Google Scholar 

  • Huang LB, Bell RW, Dell B (2001) Boron supply into wheat (Triticum aestivum L. cv. Wilgoyne) ears whilst still enclosed within leaf sheath. J Exp Bot 52:1731–1738

    CAS  PubMed  Google Scholar 

  • Huang L, Ye ZQ, Bell RW (1996) The importance of sampling young leaves for the diagnosis of boron deficiency in canola (Brassica napus L.). Plant Soil 183:187–198

    CAS  Google Scholar 

  • Jamjod S, Boonsith P, Rerkasem B (2000) The genetic source for boron tolerance in barley. J Agric (Chiang Mai Univ) 53:53–64

    Google Scholar 

  • Jamjod S, Niruntrayagul S, Rerkasem B (2004) Genetic control of boron efficiency in wheat (Triticum aestivum L.). Euphyitca 135:21–27

    CAS  Google Scholar 

  • Jamjod S, Mann CE, Rerkasem B (1992) Screening for boron deficiency in wheat. In: Mann CE, Rerkasem B (eds) Boron deficiency in wheat. Wheat special report no. 11. CIMMYT, Mexico, pp 79–82

    Google Scholar 

  • Jamjod S, Rerkasem B (1999) Genotypic variation in responses of barley to boron deficiency. Plant Soil 215:65–72

    CAS  Google Scholar 

  • Jones B Jr (1991) Plant tissue analysis in micronutrients. In: Mordtvedt JJ et al (eds) Micronutrients in agriculture, SSSA book series no. 4. SSSA, Madison, pp 523–548

    Google Scholar 

  • Khattak M, Shah M, UlAmin N, Bakht T, Iqbal J, Shah S, Ahmed A (2017) Effect of different boron concentrations and application times on the production of olive (Olea europea L.). Sci Int (Lahore) 29:1155–1159

    Google Scholar 

  • Kirk GJ, Loneragan JF (1988) Functional boron requirement for leaf expansion and its use as a critical value for diagnosis of boron deficiency in soybean. Agron J 80:758–762

    CAS  Google Scholar 

  • Konsaeng S (2007) Boron mobility in tropical crop species. PhD Thesis (Agronomy), Graduate School, Chiang Mai University, Thailand

  • Konsaeng S, Dell B, Rerkasem B (2010) Boron mobility in peanut (Arachis hypogaea L.). Plant Soil 330:281–289

    CAS  Google Scholar 

  • Konsaeng S, Sritharathikhun N, Lordkaew S, Dell B, Rerkasem B (2012) Genotypic variation in response to low boron in eucalypt clones. South For 7:159–166

    Google Scholar 

  • Korzeniowska J (2008) Response of ten winter wheat cultivars to boron foliar application in a temperate climate (South-West Poland). Aust J Agric Res 6:471–476

    Google Scholar 

  • Krudnak A, Wonprasaid S, Machikowa T (2013) Boron affects pollen viability and seed set in sunflowers. Afr J Agric Res 8:162–166

    Google Scholar 

  • Kubota C, McClure MA, Kokalis-Burelle N, Bausher MG, Rosskopf EN (2008) Vegetable grafting: history, use, and current technology status in North America. Hort Sci 43:1664–1669

    Google Scholar 

  • Lahogue F, This P, Bouquet A (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959

    CAS  Google Scholar 

  • Leaungthitikanchana S, Fujibe T, Tanaka M, Wang S, Sotta N, Takano J, Fujiwara T (2013) Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.). Plant Cell Physiol 54:1056–1063

    CAS  PubMed  Google Scholar 

  • Leaungthitikanchana S, Tanaka M, Lordkaew S, Jamjod S, Rerkasem B, Fujiwara T (2014) Comparison of BOR1-like gene expression in two genotypes with different boron efficiencies in commercial crop plants in Thailand. Soil Sci Plant Nutr 60:333–340

    CAS  Google Scholar 

  • Lehto T, Ruuhola T, Dell B (2010) Boron in forest trees and forest ecosystems. Forest Ecol Manag 260:2053–2069

    Google Scholar 

  • Lewis DH (2019) Boron: the essential element for vascular plants that never was. New Phytol 221:1685–1690

    CAS  PubMed  Google Scholar 

  • Li BH, Li WH, Kui MC, Chao WS, Jern HP, Li CR, Chu WJ, Wang CL (1978) Studies on cause of sterility of wheat. J Northeastern Agric Coll 3:1–19 (In Chinese)

    Google Scholar 

  • Li JG, Huang HB, Gao FF, Huang XM, Wang HC (2001) An overview of litchi fruit cracking. Acta Hort 558:205–208

    Google Scholar 

  • Lindsay WL, Cox FR (1985) Micronutrient soil testing for the tropics. Fert Res 7:169–199

    CAS  Google Scholar 

  • Loomis WD, Durst RW (1992) Chemistry and biology of boron. Biofactors 3:229–239

    CAS  PubMed  Google Scholar 

  • Lordkaew S (2007) Boron deficiency in maize. PhD Thesis (Agronomy), Graduate School, Chiang Mai University, Thailand

  • Lordkaew S, Dell B, Jamjod S, Rerkasem B (2011) Boron deficiency in maize. Plant Soil 342:207–220

    CAS  Google Scholar 

  • Lordkaew S, Konsaeng S, Jongjaidee J, Dell B, Rerkasem B, Jamjod S (2013) Variation in responses to boron in rice. Plant Soil 363:287–295

    CAS  Google Scholar 

  • Marboh ES, Singh SK, Pandey S, Nath V, Gupta AK, Pongener A (2017) Fruit cracking in litchi (Litchi chinensis): an overview. Indian J Agr Sci 87:3–11

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marten JM, Westermann DT (1991) Fertilizer applications for correcting micronutrient deficiencies. In: Mordtvedt JJ et al (eds) micronutrients in agriculture, SSSA book series no. 4. SSSA, Madison, pp 549–592

    Google Scholar 

  • Matoh T (1997) Boron in plant cell walls. Plant Soil 193:59–70

    CAS  Google Scholar 

  • Mesquita GL, Zambrosi FCB, Tanaka FAO, Boaretto RM, Quaggio JA, Ribeiro RV, Mattos D Jr (2016) Anatomical and physiological responses of citrus trees to varying boron availability are dependent on rootstock. Front Plant Sci 7:224

    PubMed  PubMed Central  Google Scholar 

  • Midmore DJ (1976) Growth, development and yield of wheat (Triticum aetivum) in the tropics. PhD Thesis, Reading University

  • Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105:1103–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris AA (1938) Some observations on the effects of boron treatment in the control of "hard fruit" in citrus. Jour Pom Hort Sci 16:167–181

    CAS  Google Scholar 

  • Mousavi SM, Motesharezadeh B (2020) Boron deficiency in fruit crops. In: Srivastava AK, Hu C (eds) Fruit Crops: Diagnosis and Management of Nutrient Constraints, Elsevier, pp 191–209

  • Möttönen M, Aphalo PJ, Lehto T (2001) The role of boron in drought resistance in Norway spruce (Picea abies) seedlings. Tree Physiol 21:673–681

    PubMed  Google Scholar 

  • Na Chiangmai D, Dell B, Bell RW, Huang L, Rerkasem B (2004) Genotypic variation in boron long distance transport into the reproductive organ of wheat. Plant Soil 264:141–147

    CAS  Google Scholar 

  • Nelson S (2012) Boron deficiency of papaya. Plant disease bulletin PD-91. University of Hawaii, Honolulu

    Google Scholar 

  • Nishina MS (1991) Bumpy fruit of papaya as related to boron deficiency. Commodity fact sheet CFS-PA-4B. University of Hawaii, Honolulu

    Google Scholar 

  • Noppakoonwong RN, Rerkasem B, Bell RW, Dell B, Loneragan JF (1997) Diagnosis and prognosis of boron deficiency in black gram (Vigna mungo L. Hepper) in the field by using plant analysis. In: Bell RW, Rerkasem B (eds) Boron in soils and plants. Kluwer academic publishers, Dordrecht, p 89

    Google Scholar 

  • Nyomora AMS, Brown PH, Pinney K, Polito VS (2000) Foliar application of boron to almond trees affects pollen quality. J Amer Soc Hort Sci 125:265–270

    CAS  Google Scholar 

  • Pant J, Rerkasem B, Noppakoonwong R (1998) Effect of water stress on the boron response of wheat genotypes under low boron field conditions. Plant Soil 202:193–200

    CAS  Google Scholar 

  • Paopun Y, Umrung P, Thanomchat P (2013) Cell wall structure of translucent cells of mangosteen fruit. Acta Hortic 984:421–426

    Google Scholar 

  • Pechkeo S, Sdoodee S, Nilnond C (2007) The effects of calcium and boron sprays on the incidence of translucent flesh disorder and gamboge disorder in mangosteen (Garcinia mangostana L.). Kasetsart J (Nat Sci) 41:621–632

    CAS  Google Scholar 

  • Peck TR, Soltanpour PN (1990) The principles of soil testing. In: Westermann RL (ed) Soil testing and plant analysis, 3rd ed., soil science Society of America Book Series no. 3. Soil science Society of America, Madison, pp 1–9

    Google Scholar 

  • Pérez-Castro R, Kasai K, Gainza-Cortés F, Ruiz-Lara S, Casaretto JA, Peña-Cortés H, González E (2012) VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Plant Cell Physiol 53:485–494

    PubMed  Google Scholar 

  • Poovarodom S, Boonplang N (2010) Soil calcium application and pre-harvest calcium and boron sprays on mangosteen fruit quality attributes. Acta Hortic 868:359–366

    CAS  Google Scholar 

  • Punchana S, Cakir M, Rerkasem B, Jamjod S (2012) Mapping the Bod2 gene associated with boron efficiency in wheat. Sci Asia 38:235–243

    CAS  Google Scholar 

  • Ram S, Bist LD, Sirohi SC (1989) Internal fruit necrosis of mango and its control. Acta Hort 231:805–813

    Google Scholar 

  • Rashid A, Yasin M, Ashraf M (2004) Boron deficiency in calcareous soil reduces rice yield and impairs grain quality. Inter Rice Res Notes 29:58–60

    Google Scholar 

  • Rashid A, Yasin M, Ali MA, Ahmad Z, Ullah R (2009) Boron deficiency in rice in Pakistan: a serious constraint to productivity and grain quality. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and Water Stress, Springer, pp 213–219

  • Raven JA (1980) Short-and long-distance transport of boric acid in plants. New Phytol 84:231–249

    CAS  Google Scholar 

  • Rawson HM (1996) The developmental stage during which boron limitation causes sterility in wheat genotypes and the recovery of fertility. Aust J Plant Physiol 23:709–717

    CAS  Google Scholar 

  • Räisänen M, Repo T, Lehto T (2007) Cold acclimation was partially impaired in boron deficient Norway spruce seedlings. Plant Soil 292:271–282

    Google Scholar 

  • Reed HS (1947) A physiological study of boron deficiency in plants. Hilgardia 17:377–411

    Google Scholar 

  • Rehman A, Farooq M, Rashid A, Nadeem F, Stuerz S, Asch F, Bell RW, Siddique KHM (2018) Boron nutrition of rice in different production systems, a review. Agron Sustain Dev 38:25

    Google Scholar 

  • Rerkasem B (1986) Boron deficiency in sunflower and green gram at Chiang Mai. J Agric (Chiang Mai Univ) 2:163–172 (In Thai with English abstract, tables, figures)

    Google Scholar 

  • Rerkasem B (1990) Comparison of green gram (Vigna radiata) and black gram (Vigna mungo) in boron deficiency. In: Thavarasook C et al (eds) Proceedings of the Mungbean meeting 90. Tropical Agricultural Research Centre, Japan, pp 167–174

    Google Scholar 

  • Rerkasem B (1994) Grain set failure in warm, nontraditional wheat growing areas of Asia: the boron response. In: Saunders DA, Hettel GP (eds) Wheat in heat stressed environments: irrigated. Dry Areas and Rice-Wheat Farming Systems, CIMMYT, Mexico, pp 290–296

    Google Scholar 

  • Rerkasem B, Bell RW, Loneragan JF (1990) Effects of seed and soil boron on early seedling growth of black and green gram (Vigna mungo and Vigna radiata). In: van Beusichem ML (ed) Dev plant soil Sci 41. Kluwer Academic Publishers, the Netherlands, pp 281–285

    Google Scholar 

  • Rerkasem B, Bell RW, Lodkaew S, Loneragan JF (1993) Boron deficiency in soybean [Glycine max (L.) Merr.] peanut (Arachis hypogaea L.) and black gram [Vigna mungo (L.) Hepper]: symptoms in seeds and differences among soybean cultivars in susceptibility to boron deficiency. Plant Soil 150:289–294

    CAS  Google Scholar 

  • Rerkasem B, Bell RW, Lodkaew S, Loneragan JF (1997b) Relationship of seed boron concentration to germination and growth of soybean (Glycine max). Nutr Cycl Agroecosys 48:217–223

    CAS  Google Scholar 

  • Rerkasem B, Jamjod S (1989) Correcting boron deficiency induced ear sterility in wheat and barley. Thai J Soils Fert 11:200–209 (In Thai with English abstract, tables, figures)

    Google Scholar 

  • Rerkasem B, Jamjod S (1997a) Genotypic variation in plant response to low boron and implications for plant breeding. Plant Soil 193:169–180

    CAS  Google Scholar 

  • Rerkasem B, Jamjod S (1997b) Boron deficiency induced male sterility in wheat (Triticum aestivum L.) and implications for plant breeding. Euphytica 96:257–262

    CAS  Google Scholar 

  • Rerkasem B, Jamjod S (2004) Boron deficiency in wheat: a review. Field Crop Res 89:173–186

    Google Scholar 

  • Rerkasem B, Jamjod S, Niruntrayagul S (2004) Increasing boron efficiency in many international bread wheat, durum wheat, triticale and barley germplasm will boost production on soils low in boron. Field Crop Res 86:175–184

    Google Scholar 

  • Rerkasem B, Loneragan JF (1994) Boron deficiency in two wheat genotypes in a warm, subtropical region. Agron J 86:887–890

    CAS  Google Scholar 

  • Rerkasem B, Lordkaew S (1996) Tissue boron. In: Rawson HM, Subedi KD (eds) Sterility in wheat in subtropical Asia, ACIAR proceedings no. 72. Australian Centre for International Agricultural Research, Canberra, pp 36–38

    Google Scholar 

  • Rerkasem B, Lordkaew S, Dell B (1997a) Boron requirement for reproductive development in wheat. Soil Sci Plant Nutr 43:953–957

    CAS  Google Scholar 

  • Rerkasem B, Lordkaew S, Yimyam N, Jamjod S (2019) Evaluating boron efficiency in heat tolerant wheat germplasm. Int J Agri Biol 21:385–390

    Google Scholar 

  • Rerkasem B, Netsangtip R, Bell RW, Loneragan JF, Hiranburana N (1988a) Comparative species responses to boron in a Typic Tropaqualf in northern Thailand. Plant Soil 106:15–21

    CAS  Google Scholar 

  • Rerkasem B, Netsangtip R, Lodkaew S, Tongrod W, Pridisripipat S, Meejui S, Polwong N (1988b) A survey of hollow heart in peanuts as an indicator of boron deficiency in northern Thailand. In: Patanothai A (ed) Proceedings of the 7th National Groundnut Conference. Khon Kaen University, Thailand, pp 377–383

    Google Scholar 

  • Rerkasem B, Netsangtip R, Pridisripipat S, Loneragan JF, Bell RW (1987) Boron deficiency in grain legumes. In:Wallis ES, Byth DE (eds) ACIAR proceedings no. 18, Food legume improvement for Asian farming systems, p 267

  • Rerkasem B, Saunders DA, Dell B (1989) Grain set failure and boron deficiency in wheat in Thailand. J Agric (Chiang Mai Univ) 5:1–10

    Google Scholar 

  • Rerkasem B, Srichuwong S, Lodkaew S, Tongrod W, Pridisripipat S (1988c) Boron deficiency and infection by Aspergillus in peanut kernels. In: Patanothai A (ed) Proceedings of the 7th National Groundnut Conference. Khon Kaen University, Thailand, pp 394–398

    Google Scholar 

  • Robbertse PJ, Lock JJ, Stoffeberg E, Coetzer LA (1990) Effects of B on directionality of pollen tube growth in Petunia and agapanthus. S Afr J Bot 56:487–492

    Google Scholar 

  • Royo C, Torres-Pérez R, Diestro N, Cabezas JA, Marchal C, Carbonell-Bejeranoa P (2018) The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL111. Plant Physiol 177:1234–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanzani SM, Schena L, Nigro F, Sergeeva V, Ippolito A, Salerno MG (2012) Abiotic diseases of olive. J Plant Path 94:469–391

    Google Scholar 

  • Saran PL, Kumar R (2011) Boron deficiency disorders in mango (Mangifera indica): field screening, nutrient composition and amelioration by boron application. Indian J Agr Sci 81:506–510

    CAS  Google Scholar 

  • Scott CE, Thomas HE, Thomas HE (1943) Boron deficiency in the olive. Phytopathology 33:933–942

    CAS  Google Scholar 

  • Scott LE (1944) Boron nutrition of the grape. PhD Thesis, Graduate School, University of Maryland

  • Sektheera R, Hobbs PR (1974) Sunflower. Multiple cropping project, annual report 1973-1974. Chiang Mai University, Thailand

    Google Scholar 

  • Shao JF, Yamaji N, Liu XW, Yokosho K, Shen RF, Ma JF (2018) Preferential distribution of boron to developing tissues is mediated by the intrinsic protein OsNIP31. Plant Physiol 176:1739–1750

    CAS  PubMed  Google Scholar 

  • Sherrell CG (1983) Boron deficiency and response in white and red clovers and lucerne. New Zeal J Agr Res 26:197–203

    CAS  Google Scholar 

  • Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    CAS  Google Scholar 

  • Shkolnik MY (1984) Trace Elements in Plants. Developments in Crop Science, vol 6. Elsevier, Amsterdam

    Google Scholar 

  • Siebeneichler SC, Monnerat PH, da Silva JA (2008) Deficiência de boro na cultura do abacaxi 'Pérola'. Acta Amaz 38:651–656 (In Portuguese with English abstract)

    CAS  Google Scholar 

  • Sillanpaa M (1982) Micronutrients and nutrient status of soils. FAO Soil Bull 48

  • Singh RP, Sinha SD, Prasad RB (1976) Effect of boron on seed setting in wheat under North Bihar conditions. Indian J Agron 21:100–101

    Google Scholar 

  • Smith TE (2004) Boron nutrition of Hass avocado (Persea Americana Mill.). PhD Thesis, University of Queensland, QLD., Australia

  • Smith TE, Stephenson RA, Asher CJ, Hetherington SE (1997a) Boron deficiency of avocado. 1. Effects on pollen viability and fruit set. In: Bell RW, Rerkasem B (eds) Boron in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 131–133

    Google Scholar 

  • Smith TE, Asher CJ, Stephenson RA, Hetherington SE (1997b) Boron deficiency of avocado. 2. 2. Effects on fruit size and ripening. In: Bell RW, Rerkasem B (eds) Boron in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 135–137

  • Snowball K, Robson AD (1991) Nutrient deficiencies and toxicities in wheat: a guide for field identification. CIMMYT, Mexico

    Google Scholar 

  • Soylu S, Sade B, Topal A, Akgün N, Gezgin S, Hakki EE, Babaoğlu M (2005) Responses of irrigated durum and bread wheat cultivars to boron application in a low boron calcareous soil. Turk J Agric For 29:275–286

    CAS  Google Scholar 

  • Soylu S, Topal A, Sade B, Akgün N, Gezgin S, Babaoğlu M (2004) Yield and yield attributes of durum wheat genotypes as affected by boron application in boron-deficient calcareous soils: an evaluation of major Turkish genotypes for boron efficiency. J Plant Nutr 27:1077–1106

    CAS  Google Scholar 

  • Srivastava SP, Bhandari TMS, Joshi M, Erskine W (2000) Boron deficiency in lentil: yield loss and geographic distribution in a germplasm collection. Plant Soil 219:147–151

    CAS  Google Scholar 

  • Srivastava SP, Yadav CR, Rego TJ, Johansen C, Saxena NP (1997) Diagnosis and alleviation of boron deficiency causing flower and pod abortion in chickpea (Cicer arietinum L.) in Nepal. In: Bell RW, Rerkasem B (eds) Boron in soils and plants. Kluwer academic publishers, Dordrecht, pp 95–99

    Google Scholar 

  • Stangoulis JCR, Grewal HS, Bell RW, Graham RD (2000) Boron efficiency in oilseed rape: I. genotypic variation demonstrated in field and pot grown Brassica napus L. and Brassica juncea L. Plant Soil 225:243–251

    CAS  Google Scholar 

  • Sthapit BR (1988) Studies on wheat sterility problem in the hills, tar and Tarai of Nepal. Technical report no. 16/88. Lumle agricultural research Centre, Pokhara

    Google Scholar 

  • Subedi K (1992) Wheat sterility in Nepal - a review. In: Mann CE, Rerkasem B (eds), Boron deficiency in wheat. Wheat special report no. 11. CIMMYT, Mexico, DF, pp. 57–64

  • Subedi KD, Budhathoki CB, Subedi M (1997) Variation in sterility among wheat (Triticum aestivum) cultivars in response to boron deficiency in Nepal. Euphytica 95:21–26

    Google Scholar 

  • Subedi KD, Gregory PJ, Gooding MJ (1999) Boron accumulation and partitioning in wheat cultivars with contrast tolerance to boron deficiency. Plant Soil 214:141–152

    CAS  Google Scholar 

  • Summerfield RJ, Wein HC (1980) Effects of photoperiod and air temperature on growth and yield of economic legumes. In: Summmerfieid RJ, Bunting H (eds), Advances in legume science, Royal Botanical Gardens, Kew, England, pp. 17–36

  • Sun J, Shi L, Zhang CY, Xu F (2012) Cloning and characterization of boron transporters in Brassica napus. Mol Biol Rep 39:1963–1973

    CAS  PubMed  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    PubMed  PubMed Central  Google Scholar 

  • Tandon JP, Naqvi SMA (1992) Wheat varietal screening for boron deficiency in India. In: Mann CE, Rerkasem B (eds), Boron deficiency in wheat. Wheat special report no. 11. CIMMYT, Mexico, DF, pp. 76–78

  • Tomić D, Stevović V, Đurović D, Madić M, Bokan N, Stanisavljević R (2015) Boron application in red clover (Trifolium pratense L.) seed production. Irish J Food Agric Res 54:59–63

    Google Scholar 

  • Unnevehr LJ, Duff B, Juliano BO (1992) Consumer demand for rice grain quality: introduction and major findings. In: Unnevehr LJ, Duff B, Juliano BO (eds) Consumer demand for rice grain quality. International Rice Research Institute, Los Baños, pp 5–19

    Google Scholar 

  • US Borax (2020) Susceptibility to boron deficiency of crops, by region. (https://agriculture.borax.com/regional-solutions)

  • Vaughan AKF (1977) The relation between the concentration of boron in the reproductive and vegetative organs of maize plants and their development. Rhod J Agric Res 15:163–170

    CAS  Google Scholar 

  • Wallace T, Jones JO (1941) Boron in relation to bitter pit in apples. J Pom Hort Sci 18:161–176

    Google Scholar 

  • Wang DN, Ko WH (1975) Relationship between deformed-fruit disease of papaya and boron deficiency. Phytopathology 65:445–447

    CAS  Google Scholar 

  • Ward DL, Marini RP, Byers RE (2001) Relationships among day of year of drop, seed number, and weight of mature apple fruit. Hort Sci 36:45–48

    Google Scholar 

  • Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg JB, Miller AJ (2016) Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci 21:418–437

    CAS  PubMed  Google Scholar 

  • Williams MW (1977) Adverse weather and fruit thinning chemicals can affect seed content and size of ‘red delicious’ apples—what can growers do about it? Proc Washington State Hort Assn 73:157–161

    Google Scholar 

  • Wimmer MA, Abreu I, Bell RW, Bienert MD, Brown PH, Dell B, Fujiwara T, Goldbach HE, Lehto T, Mock H-P et al (2019) Boron: an essential element for vascular plants. New Phytol 226:1232–1237

    PubMed  Google Scholar 

  • Wooldridge J (2002) Effect of foliar- and soil-applied boron in deciduous fruit orchards 1: apple and pear. S Afr J Plant Soil 19:137–144

    CAS  Google Scholar 

  • Wongmo J, Jamjod S, Rerkasem B (2004) Contrasting responses to boron deficiency in barley and wheat. Plant Soil 259:103–110

    CAS  Google Scholar 

  • Van Doorn WD, Stead AD (1997) Abscission of flowers and floral parts. J Exp Bot 48:821–837

    Google Scholar 

  • Xu FS, Wang YH, Meng JL (2001) Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breed 120:319–324

    CAS  Google Scholar 

  • Xue JM, Lin M, Bell RW, Graham RD, Yang X, Yang Y (1998) Differential response of oilseed rape (Brassica napus L.) cultivars to low boron supply. Plant Soil 204:155–163

    CAS  Google Scholar 

  • Yang L, Zhang Q, Dou J, Li L, Guo L, Shi L, Xu F (2013) Characteristics of root boron nutrition confer high boron efficiency in Brassica napus cultivars. Plant Soil 371:95–104

    CAS  Google Scholar 

  • Yang YH (1992) Wheat boron deficiency in Yunnan, China. In: Mann CE, Rerkasem B (eds), Boron deficiency in wheat. Wheat special report no. 11. CIMMYT, Mexico, DF, pp. 72–75

  • Zhang Q, Chen H, He M, Zhao Z, Cai H, Ding G, Shi L, Xu F (2017) The boron transporter BnaC4.BOR1;1c is critical for inflorescence development and fertility under boron limitation in Brassica napus. Plant Cell Env 40:1819–1833

    CAS  Google Scholar 

  • Zhang DD, Hua YP, Shi L, Xu FS (2014a) Physiological and genetic responses to boron deficiency in Brassica napus: a review. Soil Sci Plant Nutr 60:304–313

    CAS  Google Scholar 

  • Zhang DD, Hua YP, Wang XH, Zhao H, Shi L, Xu FS (2014b) A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus). PLOS one 9:e112089. https://doi.org/10.1371/journal.pone.0112089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Shen Z, Shen K (1994) The effect of boron on the development of the floral organs and seed yield of rape. Acta Pedol Sin 31:146–151 (In Chinese)

    CAS  Google Scholar 

  • Zhao H, Shi L, Duan X, Xu F, Wang Y, Meng J (2008) Mapping and validation of chromosome regions conferring a new boron-efficient locus in Brassica napus. Mol Breeding 22:495–506

    CAS  Google Scholar 

  • Zhao Z, Wu L, Nian F, Ding G, Shi T, Zhang D, Shi L, Xu F, Meng J (2012) Dissecting quantitative trait loci for boron efficiency across multiple environments in Brassica napus. PLoS One 9:e45215

    Google Scholar 

  • Zhou GF, Peng SA, Liu YZ, Wei QJ, Han J, Islam Md Z (2014) The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Tree 28:295–307

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support for this research from Chiang Mai University, and the Innovative Agriculture Research Center. We thank Ismail Cakmak for his pre-submission reading of the manuscript and valuable suggestions.

Funding

This study received partial funding from Plant Genetic Resource and Nutrition Laboratory, the Innovative Agriculture Research Center and Chiang Mai University.

Author information

Authors and Affiliations

Authors

Contributions

Benjavan Rerkasem conceived, drafted and revised the review, Sansanee Jamjod contributed the section on genetics and Tonapha Pusadee on molecular genetics.

Corresponding author

Correspondence to Benjavan Rerkasem.

Additional information

Responsible Editor: Philip John White.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rerkasem, B., Jamjod, S. & Pusadee, T. Productivity limiting impacts of boron deficiency, a review. Plant Soil 455, 23–40 (2020). https://doi.org/10.1007/s11104-020-04676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04676-0

Keywords

Navigation