Skip to main content

Advertisement

Log in

The maize mycorrhizosphere as a source for isolation of arbuscular mycorrhizae-compatible phosphate rock-solubilizing bacteria

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Phosphate chemical fertilizers are costly and raise concerns about environmental pollution through industrial production. The use of phosphate rock (PRs) emerges as a more sustainable alternative for agriculture. The aim of this work was to isolate phosphate rock-solubilizing bacteria (PRSB) from maize mycorrhizosphere, having growth promoting traits and that will be arbuscular mycorrhizae fungi (AMF) compatible.

Methods

Bacteria were isolated from the mycorrhizosphere of maize and tested for rock phosphate solubilization, production of organic acids, phosphatases and phytase activities, and growth promotion traits. The capacity of some strains to enhance the dry weight of maize plants was determined in a growth chamber experiment. The compatibility of the selected strains with Rhizophagus irregularis under in vitro conditions was also tested.

Results

Out of 118 isolates from maize, eight belonging to Asaia lannaensis, Rahnella sp., Pantoea sp., and Pseudomonas sp. were found to be the best PRSB. On solid media, all strains mobilized P from tricalcium phosphate, hydroxyapatite, and PRs. A. lannaensis was the only PRSB showing visible solubilization of AlPO4 and FePO4. All the PRSBs solubilized PR by producing D-gluconic acid and 2-ketogluconic acid and by lowering the pH. Most strains presented IAA and siderophore production and different biofilm formation and motility capacities. All strains improved the dry weight of maize seedlings compared with non-inoculated plants. The results proved that PRSBs were able to grow on R. irregularis hyphae as the sole in vitro C source.

Conclusions

Bacteria isolated from the mycorrhizosphere of maize shows effective solubilization of phosphorus from PR with different reactivity levels. The traits of these bacteria as growth promoters and their biocompatibility with AMF show their potential as inoculants. Improvement of the agronomic effectiveness of PRs is relevant for developing countries that use PRs directly as P-fertilizers (less expensive than soluble P-fertilizers) for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson G, Williams EG, Moir JO (1974) A comparison of the sorption of inorganic orthophosphate and inositol hexaphosphate by six acid soils. Eur J Soil Sci 25:51–62

    CAS  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    CAS  Google Scholar 

  • Babana AH, Dicko AH, Maïga K, Traoré D (2013) Characterization of rock phosphate-solubilizing microorganisms isolated from what (Tricum aestivum L.) rhizosphere in Mali. J Microbiol Microb Res 1:1–6

    Google Scholar 

  • Bae HD, Yanke LJ, Cheng KJ, Selinger LB (1999) A novel staining method for detecting phytase activity. J Microbiol Methods 39:17–22

    CAS  PubMed  Google Scholar 

  • Bansal M, Mukerji KG (1994) Positive correlation between VAM-induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza 5:39–44

    Google Scholar 

  • Barahona E, Navazo A, Yousef-Coronado F, Aguirre de Cárcer D, Martínez-Granero F, Espinosa-Urgel M, Martín M, Rivilla R (2010) Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol 12:3185–3195

    CAS  PubMed  Google Scholar 

  • Barea JM, Azcon R, Azcón-Aguilar C (2002a) Mycorrhizosphere interactions to improve plant fitness and soil quality. A Van Leeuw J Microb 81:343–351

    CAS  Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002b) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  PubMed  Google Scholar 

  • Becard G, Fortin JA (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    CAS  PubMed  Google Scholar 

  • Berge O, Heulin T, Achouak W, Richard C, Bally R, Balandreau J (1991) Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can J Microbiol 37:195–203

    Google Scholar 

  • Bianciotto V, Perotto S, Ruiz-Lozano JM, Bonfante P (2002) Arbuscular mycorrhizal fungi and soil bacteria: from cellular investigations to biotechnological perspectives. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal Technology in Agriculture. Birkhāuser Verlag, Basel, pp 19–32

    Google Scholar 

  • Bolland MDA, Gilkes RJ (1997) The agronomic effectiveness of reactive phosphate rocks 2: effect of phosphate rock reactivity. Aust J Exp Agr 37:937–946

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Charest MH, Beauchamp CJ, Antoun H (2005) Effects of the humic substances of de-inking paper sludge on the antagonism between two compost bacteria and Pythium ultimum. FEMS Microbiol Ecol 52:219–227

    CAS  PubMed  Google Scholar 

  • Chauhan PS, Nautiyal CS (2010) The purB gene controls rhizosphere colonization by Pantoea agglomerans. Lett Appl Microbiol 50:205–210

    CAS  PubMed  Google Scholar 

  • Chien SH, Menon RG (1995) Factors affecting the agronomic effectiveness of phosphate rock for direct application. Fert Res 41:227–234

    Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    CAS  Google Scholar 

  • Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738

    Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Google Scholar 

  • Do Carmo TS, Moreira FS, Cabral BV, Dantas RCC, de Resende MM, Cardoso V, Riberiro EJ (2019) Phosphorus recovery from phosphate rocks using phosphate solubilizing bacteria. Geomicrobiol J 36:195–203

    Google Scholar 

  • Engelen AJ, van der Heeft FC, Randsdorp PH, Smit EL (1994) Simple and rapid determination of phytase activity. J AOAC Int 77:760–764

    CAS  PubMed  Google Scholar 

  • Farhat A, Chouayekh H, Ben Farhat M, Bouchaala K, Bejar S (2008) Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme. Mol Biotechnol 40:127–135

    CAS  PubMed  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Frey-Klett P, Garbaje J, Tarkka M (2007) The mycorrhizae helper bacteria revisited. New Phytol 176:22–36

    CAS  PubMed  Google Scholar 

  • Fryer HJ, Davis GE, Manthorpe M, Varon S (1986) Lowry protein assay using an automatic microtiter plate spectrophotometer. Anal Biochem 153:262–266

    CAS  PubMed  Google Scholar 

  • Fujishige NA, Lum MR, De Hoff PL, Whitelegge JP, Faull KF, Hirsch AM (2008) Rhizobium common nod genes are required for biofilm formation. Mol Microbiol 67:504–515

    CAS  PubMed  Google Scholar 

  • Garth RD (1984) Comparison of water-insoluble phosphate fertilisers with superphosphate - a review. J Sci Food Agric 35:265–271

    Google Scholar 

  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gravel V, Antoun H, Tweddell R (2007) Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur J Plant Pathol 119:457–462

    CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    CAS  PubMed  Google Scholar 

  • Hodge A (2000) Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiol Ecol 32:91–96

    CAS  PubMed  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turk J Agric For 31:355–362

    CAS  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1997a) Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273–277

    CAS  Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1997b) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352

    CAS  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1998a) Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microbiol Lett 159:121–127

    CAS  PubMed  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998b) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Symposium: Interactions of mycorrhizal fungi. Phytopathology 78:366–371

    Google Scholar 

  • Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1:142–146

    CAS  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619

    Google Scholar 

  • Malimas T, Yukphan P, Takahashi M, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2008) Asaia lannaensis sp. nov., a new acetic acid bacterium in the alphaproteobacteria. Biosci Biotechnol Biochem 72:666–671

    CAS  PubMed  Google Scholar 

  • Mamta RP, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R (2010) Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Appl Soil Ecol 46:222–229

    Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140

    CAS  PubMed  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plan 15:1409–1416

    CAS  Google Scholar 

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40:718–727

    CAS  Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–672

    CAS  PubMed  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    CAS  PubMed  Google Scholar 

  • Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, Rodríguez-Cerrato V, Ponte MC, Soriano F (2008) Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J Appl Microbiol 105:585–590

    CAS  PubMed  Google Scholar 

  • Ordoñez YM, Fernandez BR, Lara LS, Rodríguez A, Uribe-Vélez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungus growth both inside and outside the root in the presence of native microbial communities. PLoS One 11(6):e0154438

    PubMed  PubMed Central  Google Scholar 

  • Oswald ET, Ferchau HA (1968) Bacterial associations of coniferous mycorrhizae. Plant Soil 28:187–192

    Google Scholar 

  • Pérez E, Sulbarán M, Ball MM, Yarzábal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizalo fungi for rapid assessment of infection. T Brit Mycol Soc 55:158–161

    Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    CAS  PubMed  Google Scholar 

  • Rafi MM, Krishnaveni MS, Charyulu PBBN (2019) Phosphate-solubilizing microorganisms and their emerging role in sustainable agriculture. Chapter 17 : Role of phosphate-solubilizing microorganisms in Agriculture. In: Budolla V (ed) Recent Developments in Applice Microbiology and Biochemistry. Academic Press, pp 223–233

  • Rajan SSS, Watkinson JH, Sinclair AG, Donald LS (1996) Phosphate rocks for direct application to soils. Adv Agron 57:77–159

    CAS  Google Scholar 

  • Reyes I, Baziramakenga R, Bernier L, Antoun H (2001) Solubilization of phosphate rocks and minerals by a wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphrous availability: update on microbial phosphorus. Plant Physiol 156:989–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    CAS  PubMed  Google Scholar 

  • Roy-Bolduc A, Hijri M (2010) The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. Biofertilizers & Biopesticides 2:104

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    CAS  PubMed  Google Scholar 

  • Sharpley AN, Chapra SC, Wedepohl R, Sims JT, Daniel TC, Reddy KR (1994) Managing agricultural phosphorus for protection of surface waters: issues and options. J Environ Qual 23:437–451

    CAS  Google Scholar 

  • Singh CP, Amberger A (1998) Organic acids and phosphorus solubilization in straw composted with rock phosphate. Bioresour Technol 63:13–16

    CAS  Google Scholar 

  • Smalberger SA, Chien SH, Singh U, Henao J (2010) Relative agronomic effectiveness of phosphate rock compared with triple superphosphate for initial canola, wheat, or rygrass, and residual wheat in two acid soils. Soil Sci 175:36–43

    CAS  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438

    Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones DL (2005) Organic acid behavior in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol Biochem 37:2046–2054

    Google Scholar 

  • Sulbaran M, Perez E, Ball M, Bahsas A, Yarzabal L (2009) Characterization of the mineral phosphate-solubilizing activity of Pantoea aglomerans MMB051 isolated from an iron-rich soil in southeastern Venezuela (Bolivar state). Curr Microbiol 58:378–383

    CAS  PubMed  Google Scholar 

  • Taktek S, Trépanier M, Magallón-Servín P, St-Arnaud M, Piché Y, Fortin JA, Antoun H (2015) Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol Biochem 90:1–9

    CAS  Google Scholar 

  • Taktek S, St-Arnaud M, Piché Y, Fortin A, Antoun H (2017) Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregularis DAOM 197198. Mycorrhiza 27:13–22

    CAS  PubMed  Google Scholar 

  • Tandon HLS, Cescas MP, Tyner EH (1968) An acid-free vanadate-molybdate reagent for the determination of total phosphorus in soils. Soil Sci Soc Am Proc 32:48–51

    CAS  Google Scholar 

  • Tao GC, Tian SJ, Cai MY, Xie GH (2008) Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523

    CAS  Google Scholar 

  • Toljander JF, Artusson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40

    CAS  PubMed  Google Scholar 

  • Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tunesi S, Poggi V, Gessa C (1999) Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals. Nutr Cycl Agroecosyst 53:219–227

    Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonization of wheat roots. FEMS Microbiol Ecol 36:21–31

    CAS  PubMed  Google Scholar 

  • Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos T Roy Soc B 357:449–469

    CAS  Google Scholar 

  • Vande Broek A, Lambrecht M, Vanderleyden J (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599–2606

    CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R (1997) Solubilization of rock phosphate by immobilized Aspergillus niger. Bioresour Technol 59:1–4

    CAS  Google Scholar 

  • Villegas J, Fortin J (2001) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH4+ as nitrogen source. Can J Bot 79:865–870

    CAS  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wollum A (1994) Soil sampling for microbiological analysis. In: Mickelson SH, Bigham JM (eds) Methods of soil analysis part 2: microbiological and biochemical properties. Soil Science Society of America Inc., Madison, pp 1–14

    Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada for the funding and the technical support. At the Centre of Recherché en Horticulture (CHR), Université Laval, we thank Dr. Martin Trepanier and Marie-Pierre Lammy for the support in statistical analysis, and Dr. Patrice Dion, M.Sc. Marie-Claude Julien, Dr. Henri Fankem, Dr. Antoine Dionne and Robert Kawa for general advice of the work. At CIBNOR, we thank Manuel Moreno for his valuable help on preparing the figures and Dr. Blanca Romero López for helping with the edition of sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz de-Bashan.

Additional information

Responsible Editor: Jerri Edson Zilli.

This study is dedicated to the memory of the Prof. Yoav Bashan (1951–2018) founder of the Environmental Microbiology Group at CIBNOR and the Bashan Institute of Science, pioneer in the use of PGPB for environmental purposes, and significant contributor to the study of plant-microorganism interactions in arid environments and mangroves. Prof. Bashan passed away during the edition of the manuscript.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magallon-Servín, P., Antoun, H., Taktek, S. et al. The maize mycorrhizosphere as a source for isolation of arbuscular mycorrhizae-compatible phosphate rock-solubilizing bacteria. Plant Soil 451, 169–186 (2020). https://doi.org/10.1007/s11104-019-04226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04226-3

Keywords

Navigation