Skip to main content
Log in

Mining for genes encoding proteins associated with NopL of Sinorhizobium fredii HH103 using quantitative trait loci in soybean (Glycine max Merr.) recombinant inbred lines

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

In rhizobia, host specificity is controlled by the nodulation outer proteins (Nops). However, the host genes encoding proteins associated with Nops remain unknown.

Methods

We constructed a Sinorhizobium fredii HH103ΩnopL mutant and analyzed the nodule number (NN) and nodule dry weight (NDW) of 10 germplasms inoculated with the mutant or wild-type strain. Using recombinant inbred lines (RILs), the conditional and unconditional quantitative trait loci (QTLs) associated with NopL were detected. The regions overlapping conditional and unconditional QTLs were identified. Additionally, the expression levels of selected candidate genes were analyzed by qRT-PCR.

Results

Depending on the germplasm, NopL positively or negatively affected NN and NDW. The NN and NDW of ‘Charleston’ and ‘Dongnong 594’ (RIL parents) were lower in samples inoculated with Sinorhizobium fredii HH103ΩnopL than in samples inoculated with the wild-type strain. In soybean inoculated independently with Sinorhizobium fredii HH103 and HH103ΩnopL, 11 and 5 unconditional QTLs were identified for NN and NDW, respectively, while five and two conditional QTLs were identified for NN and NDW, respectively. Two overlapping QTLs were identified among the conditional and unconditional QTLs. Furthermore, the enzymes encoded by Glyma.13g170500 and Glyma.07g099700 likely interacted with NopL.

Conclusions

The Glyma.13g170500 and Glyma.07g099700 detected at QTLs represent candidate genes that encode enzymes that interact with NopL to regulate the establishment of symbiotic relationships between rhizobia and soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander VB, William JD, Nawal MB, Crystal BM, Gary S, Pia M, William JB, Christian S (2004) NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol 134:871–879

    Google Scholar 

  • Ausmees N, Kobayashi H, Deakin WJ, Marie C, Krishnan HB, Broughton WJ (2004) Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234. J Bacteriol 186:4774–4780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azam F, Farooq S, Lodhi A (2003) Microbial biomass in agricultural soils -determination, synthesis, dynamics and role in plant nutrition. Pak J Biol Sci 6:59–68

    Google Scholar 

  • Bachlava E, Dewey RE, Burton JW, Cardinal AJ (2009) Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci 49(2):433–442

    CAS  Google Scholar 

  • Bartsev AV, Boukli NM, Deakin WJ, Staehelin C, Broughton WJ (2003) Purifcation and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. FEBS Lett 554:271–274

    CAS  PubMed  Google Scholar 

  • Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoë P, Broughton JW, Staehelin C (2004) NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol 134:871–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin G, Fathi B, Pascal R, Gary S (2015) Rhizobium–legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–194

    Google Scholar 

  • Caldwell BE (1966) Inheritance of a strain specific ineffective nodulation in soybeans. Crop Sci 6:427–428

    Google Scholar 

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomy study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. Nov. Int J Syst Evol Microbiol 38:392–397

    Google Scholar 

  • Chen QS, Zhang ZC, Liu CY (2005) Construction of soybean genetic map with RIL population by Charleston ×dongnong 594. JIA 4:801–805

    Google Scholar 

  • Chen F, Zhang W, Yu KJ, Sun LJ, Gao JQ, Zhou XY, Peng Q, Fu SX, Hu ML, Long WH, Pu HM, Chen S, Wang XD, Zhang JF (2018) Unconditional and conditional QTL analyses of seed fatty acid composition in Brassica napus L. BMC Plant Biol 18:49

    PubMed  PubMed Central  Google Scholar 

  • Dai WJ, Zeng Y, Xie ZP, Staehelin C (2008) Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234. J Bacteriol 190:5101–5110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deakin WJ, Marie C, Saad MM, Krishnan HB, Broughton WJ (2005) NopA is associated with cell surface appendages produced by the type III secretion system of Rhizobium sp. strain NGR234. Mol Plant-Microbe Interact 18:499–507

    CAS  PubMed  Google Scholar 

  • Dowdle FS, Bohlool BB (1985) Predominance of fast-growing Rhizobium japonicum in a soybean field in the People's Republic of China. Appl Environ Microbiol 50:1171–1176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne A, O'Neill LA (2003) The Interleukin-1 receptor/toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 171:re3

    Google Scholar 

  • Faruque OM, Miwa H, Yasuda M, Fujii Y, Kaneko T, Sato S, Okazaki S (2015) Identification of Bradyrhizobium elkanii genes involved in incompatibility with soybean plants carrying the Rj4 allele. Appl Environ Microbiol 81:6710–6717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fehr WR, Caviness CE (1977) Stages of soybean development. Agriculture and Home Economics Experiment Station Iowa State University of Science and Technology, Ames

    Google Scholar 

  • Figurski DH, Meyer RJ, Helinski DR (1979) Suppression of cole1 replication properties by the Inc P-1 plasmid RK2 in hybrid plasmids constructed in vitro. J Mol Biol 133:295–318

    CAS  PubMed  Google Scholar 

  • Fuchs S, Grill E, Meskiene I, Schweighofer A (2013) Type 2c protein phosphatases in plants. FEBS J 280:681–693

    CAS  PubMed  Google Scholar 

  • Ge YY, Xiang QW, Wagner C, Zhang D, Xie ZP, Staehelin C (2016) The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein kinase substrate. J Exp Bot 67:2483

    CAS  PubMed  Google Scholar 

  • Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–194

    CAS  PubMed  Google Scholar 

  • Harper JE, Nickell CD (1995) Genetic analysis of nonnodulating soybean mutants in a hypernodulated background. Soybean Genet Newsl 22:185–190

  • Hayashi T, Morohashi H, Hatakeyama M (2013) Bacterial EPIYA effectors – where do they come from? What are they? Where are they going? Cell Microbiol 15:377–385

    CAS  PubMed  Google Scholar 

  • Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time rt-pcr. BMC Biol 10:93. https://doi.org/10.1186/1471-2199-10-93

    Article  CAS  Google Scholar 

  • Hwang S, Ray JD, Cregan PB, King CA, Davies MK, Purcell LC (2014) Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L.[Merr.]). Euphytica 195:419–434

    CAS  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ (2015) NopC is a Rhizobium-specific type 3 secretion system effector secreted by Sinorhizobium (Ensifer) fredii HH103. PLoS One 10:e0142866. https://doi.org/10.1371/journal.pone.0142866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ (2016) The Sinorhizobium (Ensifer) fredii HH103 nodulation outer protein NopI is a determinant for efficient nodulation of soybean and cowpea plants. Appl Environ Microbiol 83:e02770–e02716

    Google Scholar 

  • Jones JD, Dang JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O, Broughton WJ, Deakin WJ (2009) Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol Microbiol 71(1):92–106

    CAS  PubMed  Google Scholar 

  • Kapranov P, Jensen TJ, Poulsen C, de Bruijn FJ, Szczyglowski K (1999) A protein phosphatase 2c gene, ljnpp2c1, from Lotus japonicus induced during root nodule development. Proc Natl Acad Sci U S A 96:1738–1743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimbrel JA, Thomas WJ, Jiang Y, Creason AL, Thireault CA, Sachs JL, Chang HJ (2013) Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum. PLoS Pathog 9(2):e1003204

    PubMed  PubMed Central  Google Scholar 

  • Krishnan HB (2002) NolX of Sinorhizobium fredii USDA257, a type III secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata (L.) Walp) and soybean (Glycine max [L.] Merr.) nodules. J Bacteriol 184:831–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard LT (1943) A simple assembly for use in the testing of cultures of rhizobia. J Bacteriol 45:523–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-Baena FJ, Ruizsainz JE, Rodríguezcarvajal MA, Vinardell JM (2016) Bacterial molecular signals in the Sinorhizobium fredii-soybean Symbiosis. Int J Mol Sci 17:755–777

    PubMed Central  Google Scholar 

  • Lorio JC, Kim WS, Krishnan HB (2004) NopB, a soybean cultivar-specificity protein from Sinorhizobium fredii USDA257, is a type III secreted protein. Mol Plant-Microbe Interact 17:1259–1268

    CAS  PubMed  Google Scholar 

  • Margaret I, Becker A, Blom J, Bonilla I, Goesmann A, Göttfert M, Lloret J, Mittard-Runte V, Rückert C, Ruiz-Sainz JE, Vinardell JM, Weidner S (2011) Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. J Biotechnol 155:11–19

    CAS  PubMed  Google Scholar 

  • Marie C, Deakin WJ, Viprey V, Kopciñska J, Golinowski W, Krishnan HB (2003) Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant-Microbe Interact 16:743–751

    CAS  PubMed  Google Scholar 

  • McWilliams DA, Berglund DR, Endres GJ (1999) Soybean growth and mangement quick guide. NDSU A-1174

  • Meskiene I, Baudouin E, Schweighofer A, Liwosz A, Jonak C, Rodriguez PL (2003) Stress-induced protein phosphatase 2c is a negative regulator of a mitogen-activated protein kinase. J Biol Chem 278:18945–18952

    CAS  PubMed  Google Scholar 

  • Miwa H, Okazaki S (2017) How effectors promote beneficial interactions. Curr Opin Plant Biol 38:148–154

    CAS  PubMed  Google Scholar 

  • Okazaki S, Kaneko T, Sato S, Saeki K (2013) Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci U S A 110:17131–17136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Montaño F, Jiménez-Guerrero I, Acosta-Jurado S, Navarro-Gómez P, Ollero FJ, Ruiz-Sainz JE, López-Baena FJ, Vinardell JM (2016) A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis. Sci Rep 19:31592

    Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu M-Y, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, RicciardiCastagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in CSH/HeJ and C57BL/10ScCr mice: mutations in Tlr-4 gene. Science 282:2085–2088

    CAS  PubMed  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant-Microbe Interact 12:293–318

    CAS  PubMed  Google Scholar 

  • Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165:683–701

    CAS  PubMed  Google Scholar 

  • Qi Z, Huang L, Zhu R, Xin D, Liu C, Han X (2014) A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS One 9:e104871

    PubMed  PubMed Central  Google Scholar 

  • Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21

    CAS  PubMed  Google Scholar 

  • Rodrigues J, Lopez-Baena F, Ollero F, Vinardell J, Espuny M, Bellogin R, Ruiz-Sainz J, Thomas J, Sumpton D, Ault J (2007) NopM and NopD are rhizobial nodulation outer proteins: identification using LC-MALDI and LC-ESI with a monolithic capillary column. J Proteome Res 6:1029–1037

    CAS  PubMed  Google Scholar 

  • Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    CAS  PubMed  Google Scholar 

  • Saad MM, Staehelin C, Broughton WJ, Deakin WJ (2008) Protein-protein interactions within type III secretion system-dependent pili of Rhizobium sp. strain NGR234. J Bacteriol 190:750–754

    CAS  PubMed  Google Scholar 

  • Santos MA, Geraldi IO, Garcia AA, Bortolatto N, Schiavon A, Hungria M (2013) Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas 150:17–25

    PubMed  Google Scholar 

  • Shubchynskyy V, Boniecka J, Schweighofer A, Simulis J, Kvederaviciute K, Stumpe M, Mauch F, Balazadeh S, Mueller-Roeber B, Boutrot F, Zipfel C, Meskiene I (2017) Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae. J Exp Bot 68:1169–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F, Broughton WJ, Deakin WJ (2005) NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 57:1304–1317

    CAS  PubMed  Google Scholar 

  • Staehelin C, Krishnan HB (2015) Nodulation outer proteins: double edged swords of symbiotic rhizobia. Biochem J 470:263–274

    PubMed  Google Scholar 

  • Tampakaki PA (2014) Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. Front Plant Sci 5:1–5

    Google Scholar 

  • Tang F, Yang S, Liu J, Zhu H (2016) Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol 170:26–32

    CAS  PubMed  Google Scholar 

  • Vest G (1970) Rj3 a gene conditioning ineffective nodulation in soybean. Crop Sci 10:34–35

    Google Scholar 

  • Vest G, Caldwell BE (1972) Rj4: a gene conditioning ineffective nodulation in soybean. Crop Sci 12:692

    Google Scholar 

  • Vinardell JM, Acostajurado S, Zehner S, Göttfert M, Becker A, Baena I (2015) The Sinorhizobium fredii hh103 genome: a comparative analysis with s. fredii strains differing in their symbiotic behavior with soybean. Mol Plant-Microbe Interact 28:811–824

    CAS  PubMed  Google Scholar 

  • Volodymyr S, Justyna B, Alois S, Justinas S, Kotryna K, Michael S, Felix M, Salma B, Bernd M-R, Freddy B, Cyril Z, Irute M (2016) Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae. J Exp Bot 68:1169–1183

    Google Scholar 

  • Vuong TD, Nickell CD, Harper JE (1996) Genetic and allelism analyses of hypernodulation soybean mutants from two genetic backgrounds. Crop Sci 36:1153–1158

    Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL cartographer: ver. 2.5. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Weidner S, Becker A, Bonilla I, Jaenicke S, Lloret J, Margaret I, Pühler A, Ruiz-Sainz JE, Schneiker-Bekel S, Szczepanowski R, Vinardell JM, Zehner S, Göttfert M (2012) Genome sequence of the soybean symbiont Sinorhizobium fredii HH103. J Bacteriol 194:1617–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams LF, Lynch DL (1954) Inheritance of a non-nodulation character in the soybean. Agron J 46:28–29

    Google Scholar 

  • Williams B, Williams R, Kantartzi S, Meksem K, Barakat A, Lightfoot D A (2012) Genetic analysis of root and shoot traits in the soybean [Glycine max (L.) Merr.] Essex by forrest recombinant inbred line population. J Plant Genome Sci 1:1–9

  • Xin DW, Liao S, Xie ZP, Hann DR, Staehelin C (2012) Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathog 8:e1002707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xin D, Qi Z, Jiang H, Hu Z, Zhu R, Hu J (2016) QTL location and epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS One e0149380:11

    Google Scholar 

  • Yang S, Tang F, Gao M, Krishnan HB, Zhu H (2010) R gene-controlled host specificity in the legume–rhizobia symbiosis. Proc Natl Acad Sci U S A 107:18735–18740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chen XJ, Lu HB, Xie ZP, Staehelin C (2011) Functional analysis of the type 3 effector nodulation outer protein L (NopL) from Rhizobium sp. NGR234. J Biol Chem 286:32178–32187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer S, Messmer M, Haase T, Piepho HP, Mindermann A, Schulz H et al (2016) Effects of soybean variety and bradyrhizobium, strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur J Agron 72:38–46

    CAS  Google Scholar 

  • Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine kinase signaling as a target for cancer intervention strategies. Endocrine 8:161–173

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support was received from the National Natural Science Foundation of China (Grant numbers: 31400074, 31471516, 31271747, and 30971809), the Natural Science Foundation of Heilongjiang Province of China (Grant number: ZD201213), the Heilongjiang Postdoctoral Science Foundation (Grant number: LBH-Q16014), the Harbin Science Technology Project (Grant numbers: 2013RFQXJ005 and 2014RFXXJ012), the Ministry of Science and Technology of the People’s Republic of China Project (Grant number: 2017YFE0111000), the National Key R & D Program of China (Grant numbers: 2016YFD0100500, 2016YFD0100300, and 2016YFD0100201-21), and the Foundation for University Key Teachers from the Education Department of Heilongjiang Province in China (Grant number: 1254G011). University Project of Young Scientist (UNPYSCT-2015011). We thank Lesley Benyon, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

DX, QC, and CL conceived the study, and designed and managed the experiments. HJ, ZQ, ZH, JW, and JZ provided plant lines. YZ, XL, CL, WW, JW, YS, JW, QL, JZ, LC, JL, and HC completed experiments and collected data. RZ and YZ completed statistical analyses of phenotypic data and wrote the manuscript. DX, QC, CL, HJ, ZQ, and ZH helped write the manuscript.

Corresponding authors

Correspondence to Chunyan Liu, Qingshan Chen or Dawei Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Ulrike Mathesius.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, X., Chen, L. et al. Mining for genes encoding proteins associated with NopL of Sinorhizobium fredii HH103 using quantitative trait loci in soybean (Glycine max Merr.) recombinant inbred lines. Plant Soil 431, 245–255 (2018). https://doi.org/10.1007/s11104-018-3745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3745-z

Keywords

Navigation