Skip to main content
Log in

Consistent responses of litter stoichiometry to N addition across different biological organization levels in a semi-arid grassland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Changes in litter chemistry and stoichiometry following N enrichment have important consequences on litter decomposition and plant-mediated nutrient cycling. Our knowledge about the responses of litter stoichiometry at different biological organization levels to N enrichment remains poorly understood. Moreover, whether the impacts of N enrichment on stoichiometric ratios in litter would depend on ecosystem management strategies remains unknown.

Methods

We examined the effects of N addition and mowing on C:N:P stoichiometry in standing litter at plant organ, species, functional group, and community levels in a semi-arid grassland of northern China, taking advantage of a field experiment that has been running for seven years.

Results

Nitrogen addition altered biomass allocation between different organs and among different plant functional groups, with consequences on litter stoichiometry at community level. N addition had no impacts on litter C concentration, increased litter N, and N:P ratio, and decreased litter C:N ratio from plant organ to community. The impacts of N addition on litter P and C:P depended on the identity of plant species and functional group. Mowing did not affect litter nutrient characters across all organization levels. Furthermore, no interactive effects between N addition and mowing on litter nutrient characters were observed from plant organ to community levels.

Conclusions

We conclude that N deposition will enhance litter quality even in the heavily-used grasslands with shifts in biomass allocation and species composition, which may contribute to the enhancement of plant-mediating nutrient cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R, Chapin FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  Google Scholar 

  • Aerts R, De Caluwe H (1994) Nitrogen use efficiency of Carex species in relation to nitrogen supply. Ecology 75:2362–2372

    Article  Google Scholar 

  • Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  • Bennett LT, Judd TS, Adams MA (2003) Growth and nutrient content of perennial grasslands following burning in semi-arid, sub-tropical Australia. Plant Ecol 164:185–199

    Article  Google Scholar 

  • Billings SA, Zitzer SF, Weatherly H, Schaeffer SM, Charlet T, Arnone JA, Evans RD (2003) Effects of elevated carbon dioxide on green leaf tissue and leaf litter quality in an intact Mojave Desert ecosystem. Glob Chang Biol 9:729–735

    Article  Google Scholar 

  • Bridgham SD, Pastor J, Mcclaugherty CA, Richardson CJ (1995) Nutrient-use efficiency: a litterfall index, a model, and a test along a nutrient-availability gradient in North Carolina peatlands. Am Nat 145:1–21

    Article  Google Scholar 

  • Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715

    Article  CAS  PubMed  Google Scholar 

  • Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280:745–747

    Article  CAS  PubMed  Google Scholar 

  • Craine JM, Towne EG, Nippert JB (2010) Climate controls on grass culm production over a quarter century in a tallgrass prairie. Ecology 91:2132–2140

    Article  PubMed  Google Scholar 

  • Frank DA, Kuns MM, Guido DR (2002) Consumer control of grassland plant production. Ecology 83:602–606

    Article  Google Scholar 

  • Freschet GT, Cornelissen JH, van Logtestijn RS, Aerts R (2010) Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol 186:879–889

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Robroek BJM, De Ruiter PC, Heil GW, Wassen MJ (2010) Increased N affects P uptake of eight grassland species: the role of root surface phosphatase activity. Oikos 119:1665–1673

    Article  CAS  Google Scholar 

  • Galloway JN, Schlesinger WH, Levy H, Michaels A, Schnoor JL (1995) Nitrogen fixation: anthropogenic enhancement-environmental response. Glob Biogeochem Cycles 9:235–252

    Article  CAS  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Giese M, Brueck H, Gao YZ, Lin S, Steffens M, Kögel-Knabner I, Glindemann T, Susenbeth A, Taube F, Butterbach-Bahl K, Zheng XH, Hoffmann C, Bai YF, Han XG (2013) N balance and cycling of inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecol Monogr 83:195–215

    Article  Google Scholar 

  • Güsewell S, Gessner MO (2009) N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219

    Article  Google Scholar 

  • Han WX, Fang JY, GD L, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  CAS  PubMed  Google Scholar 

  • Han X, Sistla SA, Zhang Y-H, Lü X-T, Han X-G (2014) Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe. Plant Soil 382:175–187

    Article  CAS  Google Scholar 

  • van Heerwaarden LM, Toet S, Aerts R (2003) Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. J Ecol 91:1060–1070

    Article  Google Scholar 

  • Henry HAL, Cleland EE, Field CB, Vitousek PM (2005) Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142:465–473

    Article  PubMed  Google Scholar 

  • Hiernaux P, Turner MD (1996) The effect of clipping on growth and nutrient uptake of Sahelian annual rangelands. J Appl Ecol 33:387–399

    Article  Google Scholar 

  • Hou S-L, Yin J-X, Sistla S, Yang J-J, Sun Y, Li Y-Y, Lü X-T, Han X-G (2017) Long-term mowing did not alter the impacts of nitrogen deposition on litter quality in a temperate steppe. Ecol Eng 102:404–410

    Article  Google Scholar 

  • Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci U S A 110:11911–11916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Yu G, He N, Zhan X, Fang H, Sheng W, Zuo Y, Zhang D, Wang Q (2014) Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci Rep 4:3763

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang L, Han XG, Zhang ZB, Sun OJ (2007) Grassland ecosystems in China: review of current knowledge and research advancement. Philos Trans R Soc B 362:997–1008

    Article  Google Scholar 

  • Klumpp K, Tallec T, Guix N, Soussana JF (2011) Long-term impacts of agricultural practices and climatic variability on carbon storage in a permanent pasture. Glob Chang Biol 17:3534–3545

    Article  Google Scholar 

  • Koerselman W, Meuleman AF (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol:1441–1450

  • Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G, Meinzer FC (2007) Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Funct Ecol 21:1034–1043

    Article  Google Scholar 

  • Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    Article  CAS  PubMed  Google Scholar 

  • Lü X-T, Han X-G (2010) Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant Soil 327:481–491

    Article  Google Scholar 

  • Lü XT, Kong DL, Pan QM, Simmons ME, Han XG (2012) Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia 168:301–310

    Article  PubMed  Google Scholar 

  • Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013) Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Glob Chang Biol 19:2775–2784

    Article  PubMed  Google Scholar 

  • Menge DNL, Field CB (2007) Simulated global changes alter phosphorus demand in annual grassland. Glob Chang Biol 13:2582–2591

    Article  Google Scholar 

  • Mikola J, Setälä H, Virkajärvi P, Saarijärvi K, Ilmarinen K, Voigt W, Vestberg M (2009) Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol Monogr 79:221–244

    Article  Google Scholar 

  • Müller I, Schmid B, Weiner J (2000) The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect Plant Ecol 3:115–127

    Article  Google Scholar 

  • Novotny AM, Schade JD, Hobbie SE, Kay AD, Kyle M, Reich PB, Elser JJ (2007) Stoichiometric response of nitrogen-fxing and non-fxing dicots to manipulations of CO2, nitrogen, and diversity. Oecologia 151:687–696

    Article  PubMed  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  CAS  PubMed  Google Scholar 

  • Perring MP, Hedin LO, Levin SA, McGroddy M, de Mazancourt C (2008) Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proc Natl Acad Sci U S A 105:1971–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phoenix GK, Booth RE, Leake JR, Read DJ, Grime JP, Lee JA (2004) Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland. New Phytol 161:279–289

    Article  CAS  Google Scholar 

  • Rowe EC, Smart SM, Kennedy VH, Emmett BA, Evans CD (2008) Nitrogen deposition increases the acquisition of phosphorus and potassium by heather Calluna vulgaris. Environ Pollut 155:201–207

    Article  CAS  PubMed  Google Scholar 

  • Sardans J, Penuelas J (2012) The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant–soil system. Plant Physiol 160:1741–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semmartin M, Aguiar MR, Distel RA, Moretto AS, Ghersa CM (2004) Litter quality and nutrient cycling affected by grazing-induced species replacements along precipitation gradient. Oikos 107:148–160

    Article  Google Scholar 

  • Turner CL, Seastedt TR, Dyer MI (1993) Maximization of aboveground grassland production: the role of defoliation frequency, intensity, and history. Ecol Appl 3:175–186

    Article  CAS  PubMed  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Wang X-G, Lü X-T, Han X-G (2014) Responses of nutrient concentrations and stoichiometry of senesced leaves in dominant plants to nitrogen addition and prescribed burning in a temperate steppe. Ecol Eng 70:154–161

    Article  Google Scholar 

  • Waring BG (2013) Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biol Biochem 64:89–95

    Article  CAS  Google Scholar 

  • Wedin DA, Tilman D (1996) Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 274:1720–1723

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Westoby M (2003) Nutrient concentration, resorption and life span: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19

    Article  Google Scholar 

  • Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lu X, Isbell F, Stevens C, Han X, He N, Zhang G, Yu Q, Huang J, Han X (2014) Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Glob Chang Biol 20:3520–3529

    Article  PubMed  Google Scholar 

  • Zhang Y, Feng J, Isbell F, Lu X, Han X (2015) Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Sci Rep 5:12558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Loreau M, Lu X, He N, Zhang G, Han X (2016) Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Glob Chang Biol 22:1445–1455

    Article  PubMed  Google Scholar 

  • Ziter C, MacDougall AS (2013) Nutrients and defoliation increase soil carbon inputs in grassland. Ecology 94:106–116

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the staff of the Inner Mongolia Grassland Ecosystem Research Station (IMGERS) for supporting this work and Chenxi Tian, Sihan Liu, Yi Wu, and Yue Sun for their assistance with laboratory work. This work was supported by the National Basic Research Program of China (2016YFC0500601 and 2015CB150802), National Natural Science Foundation of China (31770503, 31470505, and 31430016), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15010403), Youth Innovation Promotion Association CAS (2014174), and the Key Research Program from CAS (QYZDB-SSW-DQC006 and KFZD-SW-305-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Tao Lü.

Additional information

Responsible Editor: Alfonso Escudero

Electronic supplementary material

ESM 1

(DOC 46.5 kb)

ESM 2

(DOC 64.0 kb)

ESM 3

(DOC 63.0 kb)

ESM 4

(DOC 74.5 kb)

ESM 5

(DOC 53.0 kb)

ESM 6

(DOC 40.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, SL., Yin, JX., Yang, JJ. et al. Consistent responses of litter stoichiometry to N addition across different biological organization levels in a semi-arid grassland. Plant Soil 421, 191–202 (2017). https://doi.org/10.1007/s11104-017-3446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3446-z

Keywords

Navigation