Skip to main content
Log in

Long-term impact of elevated CO2 on phosphorus fractions varies in three contrasting cropping soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aim

The long-term effect of elevated CO2 (eCO2) on P biogeochemistry in farming systems is largely unknown. This study compared the effects of eCO2 on P fractions in three contrasting soils after growing crops for seven years.

Methods

An experiment of free-air-CO2-enrichment (FACE) was conducted with a rotation of wheat, field pea and canola grown in intact cores of Chromosol, Vertosol and Calcarosol under ambient CO2 (aCO2) (390 ± 10 ppm) or eCO2 (550 ± 30 ppm). Crop P removal, soil P fractions and biochemical properties were determined.

Results

Elevated CO2 resulted in extra 134, 91 and 93 mg P core−1 removed as grains, compared to aCO2, for Chromosol, Vertosol and Calcarosol, respectively. It decreased the concentration of NaHCO3-extractable inorganic P (by 17–36%), and decreased NaOH-extractable inorganic P by 24% in Chromosol, and 77% in Vertosol but did not affect it in Calcarosol. Elevated CO2 also decreased NaOH-extractable organic P by 20, 12 and 7 mg kg−1 in the three soils, respectively. Furthermore, eCO2 decreased soil organic carbon (by 8.2%) and increased microbial biomass carbon and respiration in Chromosol but not in other two soils.

Conclusion

Long-term eCO2 favoured microbial mineralization of organic P in Chromosol and chemical mobilization of non-labile inorganic P in all three soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andresen LC, Michelsen A, Jonasson S, Schmidt IK, Mikkelsen TN, Ambus P, Beier C (2010) Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought. Plant Soil 328:381–396

    Article  CAS  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Roy KS, Sash PK, Neogi S, Shahid M, Nayak AK, Raja R, Karthikeyan S, Balachandar D, Rao KS (2014) Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L.) Eur J Agron 53:28–37

    Article  CAS  Google Scholar 

  • Bünemann EK (2015) Assessment of gross and net mineralization rates of soil organic phosphorus - a review. Soil Biol Biochem 89:82–98

    Article  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2000) Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant Soil 220:151–163

    Article  CAS  Google Scholar 

  • FAO-UNESCO (1976) Soil map of the world, 1:5 000 000, vol X, Australia. UNESCO, Paris

    Google Scholar 

  • Gentile R, Dodd M, Lieffering M, Brock SC, Theobald PW, Newton PCD (2012) Effects of long-term exposure to enriched CO2 on the nutrient-supplying capacity of a grassland soil. Biol Fertil Soils 48:357–362

    Article  CAS  Google Scholar 

  • Guo F, Yost RS, Hue NV, Evensen CI, Silva JA (2000) Changes in phosphorus fractions in soils under intensive plant growth. Soil Sci Soc Am J 64:1681–1689

    Article  CAS  Google Scholar 

  • Guppy CN, Menzies NW, Moody PW, Compton BL, Blamey FPC (2000) A simplified, sequential, phosphorus fractionation method. Commun Soil Sci Plan 31:1981–1991

    Article  CAS  Google Scholar 

  • Huang WJ, Zhou GY, Liu JX, Duan HL, Liu XZ, Fang X, Zhang DQ (2014) Shifts in soil phosphorus fractions under elevated CO2 and N addition in model forest ecosystems in subtropical China. Plant Ecol 215:1373–1384

    Article  Google Scholar 

  • Isbell RF (2002) The Australian soil classification, 2nd edn. CSIRO Publishing, Collinwood

    Google Scholar 

  • Jakobsen I, Smith SE, Smith FA, Watts-Williams SJ, Clausen SS, Gronlund M (2016) Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas. J Exp Bot 67:6173–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Tang C, Armstrong R, Sale P (2012) Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient vertisol. Plant Soil 358:91–104

    Article  CAS  Google Scholar 

  • Jin J, Tang C, Armstrong R, Butterly C, Sale P (2013) Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant Soil 368:315–328

    Article  CAS  Google Scholar 

  • Jin J, Tang C, Sale P (2015) The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Ann Bot 116:987–999

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan FN, Lukac M, Turner G, Godbold DL (2008) Elevated atmospheric CO2 changes phosphorus fractions in soils under a short rotation poplar plantation (EuroFACE). Soil Biol Biochem 40:1716–1723

    Article  CAS  Google Scholar 

  • Kritzler UH, Johnson D (2010) Mineralisation of carbon and plant uptake of phosphorus from microbially-derived organic matter in response to 19 years simulated nitrogen deposition. Plant Soil 326:311–319

    Article  CAS  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31

    Article  CAS  Google Scholar 

  • Lian T, Jin J, Wang G, Tang C, Yu Z, Li Y, Liu J, Zhang S, Liu X (2017) The fate of soybean residue-carbon links to changes of bacterial community composition in Mollisols differing in soil organic carbon. Soil Biol Biochem 109:50–58

    Article  CAS  Google Scholar 

  • Liu J, Aronsson H, Blomback K, Persson K, Bergstrom L (2012) Long-term measurements and model simulations of phosphorus leaching from a manured sandy soil. J Soil Water Conserv 67:101–110

    Article  Google Scholar 

  • Lukac M, Calfapietra C, Lagomarsino A, Loreto F (2010) Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiol 30:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Macklon AES, Grayston SJ, Shand CA, Sim A, Sellars S, Ord BG (1997) Uptake and transport of phosphorus by Agrostis Capillaris seedlings from rapidly hydrolysed organic sources extracted from 32P-labelled bacterial cultures. Plant Soil 190:163–167

    Article  CAS  Google Scholar 

  • McDowell RW, Condron LM (2000) Chemical nature and potential mobility of phosphorus in fertilized grassland soils. Nutr Cycl Agroecosyst 57:225–233

    Article  Google Scholar 

  • Mckenzie RH, Stewart JWB, Dormaar JF, Schaalje GB (1992) Longterm crop rotation and fertilizer effects on phosphorus transformations. II. In a Luvisolic soil. Can J Soil Sci 72:581–589

    Article  CAS  Google Scholar 

  • Mollah M, Partington D, Fitzgerald G (2011) Understand distribution of carbon dioxide to interpret crop growth data: Australian grains free-air carbon dioxide enrichment experiment. Crop Pasture Sci 62:883–891

  • Motomizu S, Wakimoto T, Toei K (1983) Spectrophotometric determination of phosphate in river waters with molybdite and malachite green. Analyst 108:361–367

    Article  CAS  Google Scholar 

  • Nie M, Pendall E, Bell C, Gasch CK, Raut S, Tamang S, Wallenstein MD (2013) Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol Lett 16:234–241

    Article  PubMed  Google Scholar 

  • Ochoa-Hueso R, Silvana M, Alonso R, Arróniz-Crespo M, Avila A, Bermejo V, Bobbink R, Branquinho C, Concostrina-Zubiri L, Cruz C, de Carvalho RC, de Marco A, Dias T, Elustondo D, Elvira S, Estébanez B, Fusaro L, Gerosa G, Izquieta-Rojano S, Cascio ML, Marzuoli R, Matos P, Mereu S, Merino J, Morillas L, Nunes A, Paoletti E, Paoli L, Pinho P, Rogers IB, Arthur S, Sicard P, Stevens CJ, Theobald MR (2017) Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean basin: current research and future directions. Environ Pollut 227:194–206

    Article  CAS  PubMed  Google Scholar 

  • Parfitt RL (1978) Anion adsorption by soils and soil materials. Adv Agron 30:1–50

    CAS  Google Scholar 

  • Pendall E, Heisler-White JL, Williams DG, Dijkstra FA, Carrillo Y, Morgan JA, LeCain DR (2013) Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide. PLoS One 8:e71921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrott KW, Maher FM, Thorrold BS (1989) Accumulation of phosphorus fractions in yellow-brown pumice soils with development. New Zealand J Agri Res 32:53–62

    Article  Google Scholar 

  • Rossel RAV, Bui EN (2016) A new detailed map of total phosphorus stocks in Australian soil. Sci Total Environ 542:1040–1049

    Article  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143

    Article  CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter DD, Allen HL, Li JW, Markewitz D, Raikes J (2006) Bioavailability of slowly cycling soil phosphorus: major restructuring of soil P fractions over four decades in an aggrading forest. Oecologia 150:259–271

    Article  PubMed  Google Scholar 

  • Rukshana F, Butterly CR, Baldock JA, Xu JM, Tang C (2012) Model organic compounds differ in priming effects on alkalinity release in soils through carbon and nitrogen mineralisation. Soil Biol Biochem 51:35–43

    Article  CAS  Google Scholar 

  • Sharma R, Bella RW, Wong MTF (2017) Dissolved reactive phosphorus played a limited role in phosphorus transport via runoff, throughflow and leaching on contrasting cropping soils from southwest Australia. Sci Total Environ 577:33–44

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Ilg K, Lang F, Kaupenjohann M (2004) Adsorption controls mobilization of colloids and leaching of dissolved phosphorus. Eur J Soil Sci 55:253–263

    Article  CAS  Google Scholar 

  • Steel RG, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Turner BL, Cade-Menun BJ, Westermann DT (2003) Organic phosphorus composition and potential bioavailability in semi-arid arable soils of the western United States. Soil Sci Soc Am J 67:1168–1179

    Article  CAS  Google Scholar 

  • Turner BL, Cade-Menun BJ, Condron LM, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66:294–306

    Article  CAS  PubMed  Google Scholar 

  • van Groenigen KJ, Qi X, Osenberg CW, Luo YQ, Hungate BA (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344:508–509

    Article  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

  • Vestergard M, Reinsch S, Bengtson P, Ambus P, Christensen S (2016) Enhanced priming of old, not new soil carbon at elevated atmospheric CO2. Soil Biol Biochem 100:140–148

    Article  Google Scholar 

  • Vu DT, Tang C, Armstrong RD (2008) Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate. Plant Soil 304:21–33

    Article  CAS  Google Scholar 

  • Vu DT, Tang C, Armstrong RD (2009) Tillage system affects phosphorus form and depth distribution in three contrasting Victorian soils. Aust J Soil Res 47:33–45

    Article  CAS  Google Scholar 

  • Wang J, Wu Y, Zhou J, Bing H, Sun H (2016) Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development. Biol Fertil Soils 52:825–839

    Article  CAS  Google Scholar 

  • Yu ZH, Li YS, Wang GH, Liu JJ, Liu JD, Liu XB, Herbert SJ, Jin J (2016) Effectiveness of elevated CO2 mediating bacterial communities in the soybean rhizosphere depends on genotypes. Agric Ecosyst Environ 231:229–232

    Article  CAS  Google Scholar 

  • Yuen SH, Pollard AG (1954) Determination of nitrogen in agricultural materials by the Nessler reagent II Micro-determination of plant tissue and soil extracts. J Sci Food Agr 5:364–369

    Article  CAS  Google Scholar 

  • Zhang Q, Wang GH, Feng YK, Sun QZ, Witt C, Doberman A (2006) Changes in soil phosphorus fractions in a calcareous paddy soil under intensive rice cropping. Plant Soil 288:141–154

    Article  CAS  Google Scholar 

  • Zhang Y, Chen XM, Zhang CC, Pan GX, Zhang XH (2014) Availability of soil nitrogen and phosphorus under elevated CO2 and temperature in the Taihu Lake region, China. J Plant Nutr Soil Sci 177:343–348

    Article  CAS  Google Scholar 

  • Zibilske LM (1994) Carbon mineralization, methods of soil analysis, part 2. Microbial and biochemical properties. Soil Science Society of America, Madison, pp 835–863

    Google Scholar 

Download references

Acknowledgements

The Australian Grains Free Air CO2 Enrichment program including SoilFACE is jointly run by Agriculture Victoria (Victorian State Department of Economic Development, Jobs, Transport and Resources) with the University of Melbourne and funding from the Grains Research and Development Corporation (GRDC) and the Australian Government Department of Agriculture and Water Resources. We gratefully acknowledge Mel Munn, Roger Perris, Liana Warren and Russel Argall and team (Agriculture Victoria) for management of the SoilFACE experiment and Mahabubur Mollah (Research Engineer, Agriculture Victoria) for running the FACE technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixian Tang.

Additional information

Responsible Editor: N. Jim Barrow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Armstrong, R. & Tang, C. Long-term impact of elevated CO2 on phosphorus fractions varies in three contrasting cropping soils. Plant Soil 419, 257–267 (2017). https://doi.org/10.1007/s11104-017-3344-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3344-4

Keywords

Navigation