Skip to main content

Advertisement

Log in

Contrasting patterns of carbon sequestration between Gilbertiodendron dewevrei monodominant forests and Scorodophloeus zenkeri mixed forests in the Central Congo basin

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Gilbertiodendron dewevrei (De Wild.) J.Léonard monodominant forests (MOF) and Scorodophloeus zenkeri Harms mixed forests (MIF) frequently co-occur on similar soil conditions in the Central Congo basin. Although tree species composition is known to impact C storage, the patterns of C sequestration between those contrasted forest types as well as the associated drivers remain unknown.

Methods

Annual litterfall, as well as soil (forest floor and mineral soil down to 220 cm depth) organic C (SOC) and aboveground C (AGC) stocks were investigated in MIF and MOF located on highly weathered sandy soils in the Yoko Reserve (DRC).

Results

The annual leaf litterfall was similar under both forests but litterfall quality in MOF strongly differed by a set of traits related to organic matter recalcitrance. The SOC stock down to 220 cm was 55% higher under MOF compared to MIF, and the differences between forests remained significant down to 100 cm. While the combined SOC and AGC stocks were similar in both forests, the SOC stocks accounted for ca. 19 and 33% of the total C stocks in MIF and MOF, respectively.

Conclusions

Because of similar litterfall C inputs, we conclude that the greater SOC accumulation under G. dewevrei results from a limitation of the decomposition rate, in agreement with the traits of the corresponding leaf litter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AGB :

Aboveground biomass

AGC:

Aboveground carbon biomass

Al-o :

Oxalate-extractable Al

BA:

Basal area

CEC:

Cation exchange capacity

DBH:

Diameter at 130 cm aboveground

DRC:

Democratic Republic of Congo

Fe-o :

Oxalate-extractable Fe

FF:

Forest floor

FFC :

Forest floor carbon

G. dewevrei :

Gilbertiodendron dewevrei (De Wild.) J.Léonard

ICP:

Inductively coupled plasma

MIF:

Semi-deciduous Scorodophloeus zenkeri Harms mixed forests

MOF :

Evergreen Gilbertiodendron dewevrei (De Wild.) J.Léonard monodominant forests

MS:

Mineral soil

MSC:

Mineral soil carbon

OL :

Non-decomposed fallen plant material

OF+OH :

Partly or strongly decomposed organic material

OM:

Organic matter

PCA:

Principal component analysis

SOC:

Soil organic carbon (forest floor + mineral soil)

S. zenkeri :

Scorodophloeus zenkeri Harms

SI:

Shannon diversity index

WSG:

Wood specific gravity

References

  • Aerts R, Chapin FS (1999) The mineral nutrition of wild plants revisited: a Re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. doi:10.1016/S0065-2504(08)60016-1

    Article  Google Scholar 

  • Augusto L, Dupouey JL, Ranger J (2003) Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann For Sci 60:823–831. doi:10.1051/forest:2003077

    Article  Google Scholar 

  • Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483. doi:10.1111/j.1365-2435.2010.01802.x

    Article  Google Scholar 

  • Batjes NH (2014) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 65:10–21. doi:10.1111/j.1365-2389.1996.tb01386.x

    Article  CAS  Google Scholar 

  • Bénédet F, Doucet J-L, Fayolle A et al. (2015) Cofortraits, African plant traits information database

  • Berg B, Steffen KT, McClaugherty C (2007) Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 82:29–39. doi:10.1007/s10533-006-9050-6

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2008) The nature and properties of soils, 14th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Bréchet L, Ponton S, Alméras T et al (2011) Does spatial distribution of tree size account for spatial variation in soil respiration in a tropical forest? Plant Soil 347:293–303. doi:10.1007/s11104-011-0848-1

    Article  Google Scholar 

  • Carter M (1993) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton

    Google Scholar 

  • Chave J, Condit R, Aguilar S et al (2004) Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc Lond Ser B Biol Sci 359:409–420. doi:10.1098/rstb.2003.1425

    Article  Google Scholar 

  • Chave J, Coomes D, Jansen S et al (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi:10.1111/j.1461-0248.2009.01285.x

    Article  PubMed  Google Scholar 

  • Chave J, Réjou-Méchain M, Burquez A et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20:3177–3190. doi:10.1111/gcb.12629

    Article  PubMed  Google Scholar 

  • Connell JH, Lowman MD (1989) Low-diversity tropical rain forests: some possible mechanisms for their existence. Am Nat 134:88–119. doi:10.1086/284967

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi:10.1111/j.1461-0248.2008.01219.x

    Article  PubMed  Google Scholar 

  • Couralet C (2010) Community dynamics, phenology and growth of tropical trees in the rain forest Reserve of Luki, Democratic Republic of Congo. PhD thesis, Ghent University, Belgium

    Google Scholar 

  • Crews T (1999) The presence of nitrogen fixing legumes in terrestrial communities: evolutionary vs ecological considerations. Biogeochemistry 46:233–246

    CAS  Google Scholar 

  • Dawud SM, Raulund-Rasmussen K, Domisch T et al (2016) Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems. doi:10.1007/s10021-016-9958-1

    Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531. doi:10.1111/j.1461-0248.2008.01164.x

    Article  PubMed  Google Scholar 

  • de Ridder M, van den Bulcke J, Vansteenkiste D et al (2011) High-resolution proxies for wood density variations in Terminalia superba. Ann Bot 107:293–302

    Article  PubMed  Google Scholar 

  • Diaz S, Hector A, Wardle DA (2009a) Biodiversity in forest carbon sequestration initiatives: not just a side benefit. Curr Opin Environ Sustain 1:55–60

    Article  Google Scholar 

  • Diaz S, Wardle DA, Hector A (2009b) Incorporating biodiversity in climate change mitigation initiatives. In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (eds) Biodiversity, Ecosystem functioning, and human wellbeing: an ecological and economic perspective. Oxford Scholarship, pp 148–166

  • Díaz-Pinés E, Rubio A, Van Miegroet H et al (2011) Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? For Ecol Manag 262:1895–1904. doi:10.1016/j.foreco.2011.02.004

    Article  Google Scholar 

  • Dieleman WIJ, Venter M, Ramachandra A et al (2013) Soil carbon stocks vary predictably with altitude in tropical forests: implications for soil carbon storage. Geoderma 204–205:59–67. doi:10.1016/j.geoderma.2013.04.005

    Article  Google Scholar 

  • Djuikouo MNK, Doucet JL, Nguembou CK et al (2010) Diversity and aboveground biomass in three tropical forest types in the Dja biosphere reserve, Cameroon. Afr J Ecol 48:1053–1063. doi:10.1111/j.1365-2028.2010.01212.x

    Article  Google Scholar 

  • Doetterl S, Kearsley E, Bauters M et al (2015) Aboveground vs. belowground carbon stocks in African tropical lowland rainforest: drivers and implications. PLoS One 10:e0143209. doi:10.1371/journal.pone.0143209

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos LT, Magnabosco Marra D, Trumbore S et al (2016) Windthrows increase soil carbon stocks in a Central Amazon forest. Biogeosciences 13:1299–1308. doi:10.5194/bg-13-1299-2016

    Article  Google Scholar 

  • Doumenge C (2012) Gilbertiodendron dewevrei (De Wild.) J.Léonard. [Internet] Fiche de PROTA4U. In: Lemmens RHM, Louppe D, Oteng-Amoako AA (eds) PROTA (plant resources of tropical Africa). Wageningen

  • Enriquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471. doi:10.1007/BF00566960

    Article  CAS  PubMed  Google Scholar 

  • Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in Forest conversion, shifting cultivation and secondary vegetation. Clim Chang 46:115–158. doi:10.1023/A:1005569915357

    Article  CAS  Google Scholar 

  • Feller C, Beare MH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116. doi:10.1016/S0016-7061(97)00039-6

    Article  CAS  Google Scholar 

  • Frank D, Reichstein M, Bahn M et al (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Chang Biol 21:2861–2880. doi:10.1111/gcb.12916

    Article  PubMed  PubMed Central  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  • Gentry AH (1988) Tree species richness of upper Amazonian forests. Proc Natl Acad Sci 85:156–159. doi:10.1073/pnas.85.1.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn 36:703–743

    Article  Google Scholar 

  • Guariguata M, Cornelius J, Locatelli B et al (2008) Mitigation needs adaptation: tropical forestry and climate change. Mitig Adapt Strateg Glob Chang 13:793–808. doi:10.1007/s11027-007-9141-2

    Article  Google Scholar 

  • Hart TB (1995) Seed, seedling and sub-canopy survival in monodominant and mixed forests of the Ituri Forest, Africa. J Trop Ecol 11:443–459. doi:10.1017/S0266467400008919

    Article  Google Scholar 

  • Hart TB, Hart JA, Murphy PG (1989) Monodominant and species-rich forests of the humid tropics: causes for their Co-occurrence. Am Nat 133:613–633

    Article  Google Scholar 

  • Hedin LO, Vitousek PM, Matson PA (2003) Nutrient losses over four million years of tropical forest development. Ecology 84:2231–2255. doi:10.1890/02-4066

    Article  Google Scholar 

  • Hulvey KB, Hobbs RJ, Standish RJ et al (2013) Benefits of tree mixes in carbon plantings. Nat Clim Chang 3:869–874. doi:10.1038/nclimate1862

    Article  CAS  Google Scholar 

  • Hunt JW, Dean AP, Webster RE et al (2008) A novel mechanism by which silica defends grasses against herbivory. Ann Bot 102:653–656. doi:10.1093/aob/mcn130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2006) Forest lands; intergovernmental panel on climate change guidelines for National Greenhouse Gas Inventories. Volucella 4:83

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  • Kearsley E, de Haulleville T, Hufkens K et al (2013) Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat Commun 4:2269. doi:10.1038/ncomms3269

    Article  PubMed  Google Scholar 

  • Keiluweit M, Nico P, Harmon ME et al (2015) Long-term litter decomposition controlled by manganese redox cycling. Proc Natl Acad Sci 112:E5253–E5260. doi:10.1073/pnas.1508945112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22. doi:10.1016/j.geoderma.2004.01.032

    Article  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258. doi:10.1016/j.foreco.2005.08.015

    Article  Google Scholar 

  • Langley JA, Chapman SK, Hungate BA (2006) Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett 9:955–959

    Article  PubMed  Google Scholar 

  • Lebrun J, Gilbert G (1954) Une classification écologique des forêts du Congo. Institut National pour l’Etude Agronomique du Congo belge - INEAC

    Google Scholar 

  • Lewis SL (2006) Tropical forests and the changing earth system. Philos Trans R Soc Lond Ser B Biol Sci 361:195–210. doi:10.1098/rstb.2005.1711

    Article  Google Scholar 

  • Lewis SL, Sonké B, Sunderland T et al (2013) Above-ground biomass and structure of 260 African tropical forests. Philos Trans R Soc Lond Ser B Biol Sci. doi:10.1098/rstb.2012.0295

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088

    Article  CAS  PubMed  Google Scholar 

  • Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75. doi:10.1111/j.1365-2745.2011.01916.x

    Article  CAS  Google Scholar 

  • Mikutta R, Kleber M, Torn M, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56. doi:10.1007/s10533-005-0712-6

    Article  CAS  Google Scholar 

  • Motavalli PP, Palm CA, Parton WJ et al (1995) Soil pH and organic C dynamics in tropical forest soils: evidence from laboratory and simulation studies. Soil Biol Biochem 27:1589–1599. doi:10.1016/0038-0717(95)00082-P

    Article  CAS  Google Scholar 

  • Mueller KE, Eissenstat DM, Hobbie SE et al (2012) Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry 111:601–614

    Article  CAS  Google Scholar 

  • Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem function and service? Curr Opin Environ Sustain 2:75–79. doi:10.1016/j.cosust.2010.02.003

    Article  Google Scholar 

  • Nasi R, Mayaux P, Devers D et al (2009) Un aperçu des stocks de carbone et leurs variations dans les forêts du Bassin du Congo. In: de Wasseige C, Devers D, de Marcken P, Atyi RE, Nasi R, Mayaux P (eds) Les forêts du Bassin du Congo : Etat des forêts 2008. des publications de l’Union européenne, Luxembourg, pp. 199–216

    Google Scholar 

  • Ngo KM, Turner BL, Muller-Landau HC et al (2013) Carbon stocks in primary and secondary tropical forests in Singapore. For Ecol Manag 296:81–89. doi:10.1016/j.foreco.2013.02.004

    Article  Google Scholar 

  • Nunan N, Wu K, Young IM et al (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol Ecol 44:203–215. doi:10.1016/S0168-6496(03)00027-8

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the World’s forests. Science 333:988–993. doi:10.1126/science.1201609

    Article  CAS  PubMed  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Peh KS-H (2009) The relationship between species diversity and ecosystem function in low- and high-diversity tropical african forests. The University of Leeds

  • Peh KSH, Lewis SL, Lloyd J (2011a) Mechanisms of monodominance in diverse tropical tree-dominated systems. J Ecol 99:891–898

    Article  Google Scholar 

  • Peh KSH, Sonké B, Lloyd J et al (2011b) Soil does not explain monodominance in a central african tropical forest. PLoS One. doi:10.1371/journal.pone.0097585

    Google Scholar 

  • Peh KSH, Sonké B, Taedoung H et al (2012) Investigating diversity dependence of tropical forest litter decomposition: experiments and observations from Central Africa. J Veg Sci 23:223–235

    Article  Google Scholar 

  • Rawls WJ, Pachepsky YA, Ritchie JC et al (2003) Effect of soil organic carbon on soil water retention. Geoderma 116:61–76. doi:10.1016/S0016-7061(03)00094-6

    Article  CAS  Google Scholar 

  • Runge F, Runge J (1996) Opal phytoliths in East African plants and soils. In: Pinilla A, Juan-Tresserras J, Machcado J (eds) First European meeting on phytolith research.

  • Saiz G, Bird MI, Domingues T et al (2012) Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa. Glob Chang Biol 18:1670–1683. doi:10.1111/j.1365-2486.2012.02657.x

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi:10.1038/nature10386

    Article  CAS  PubMed  Google Scholar 

  • Schulp CJE, Nabuurs G-J, Verburg PH, de Waal RW (2008) Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For Ecol Manag 256:482–490. doi:10.1016/j.foreco.2008.05.007

    Article  Google Scholar 

  • Silver WL, Neff J, McGroddy M et al (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian Forest ecosystem. Ecosystems 3:193–209. doi:10.1007/s100210000019

    Article  CAS  Google Scholar 

  • Spain AV (1990) Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical australian rainforest soil. Aust J soil reaserch 28:825–839

    Article  CAS  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA et al (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • Torti SD, Coley PD (1999) Tropical monodominance: a preliminary test of the ectomycorrhizal hypothesis. Biotropica 31:220–228

    Article  Google Scholar 

  • Torti SD, Coley PD, Kursar TA (2001) Causes and consequences of monodominance in tropical lowland forests. Am Nat 157:141–153. doi:10.1086/318629

    Article  CAS  PubMed  Google Scholar 

  • van Delft B, de Waal RW, Kemmers RH et al (2006) Field guide humus forms. Description and classification of humus forms for ecological applications, In

    Google Scholar 

  • Van Ranst E, Baert G, Ngongo M, Mafuka P (2010) Carte pédologique de Yangambi, planchette 2: Yangambi, échelle 1:50.000. UGent; Hogent; UNILU, UNIKIN

    Google Scholar 

  • Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manag 309:4–18. doi:10.1016/j.foreco.2013.01.017

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K et al (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. Eur J Soil Sci 57:426–445. doi:10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  • WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

    Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA et al. (2009) Global wood density database

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. doi:10.1093/jpe/rtn002

    Article  Google Scholar 

Download references

Acknowledgments

Benoît Cassart obtained a PhD grant from the ‘Fonds National de la Recherche Scientifique’ (FNRS-FRIA), and received additional support for field work and laboratory analyses from a joint WBI-ERAIFT grant. Albert Angbonga Basia was funded by the ‘AFORCO – Appui à l’organisation d’un master en aménagement forestier pour le renforcement des capacités des chercheurs congolais en vue de la relance socio-économique de la République Démocratique du Congo’ project, funded by the ‘Commission Universitaire au Développement’ (CUD, ARES-CCD) and coordinated by Prof. Jan Bogaert (ULg – Gembloux Agro-Bio Tech). Enrique Andivia was partly funded by a post-doctoral Marie Curie incoming fellowship. All authors thank the numerous persons who contributed to the field work in DRC. They are also greateful to Karine Henin who carried out most of the chemical analyses, and to Joris Van Acker, Jan Van den Bulcke (Laboratory of Wood Technology, Ghent University), Hans Beeckman and Maaike De Ridder (Royal Museum for Central Africa), who provided access to the CT scan facilities for WSG determinations through the XYLAREDD project. We would also like to thank Kris Verheyen, and two anonymous reviewers for their helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Cassart.

Additional information

Responsible Editor: Zucong Cai.

Electronic supplementary material

Online Resource 1

(DOCX 138 kb)

Online Resource 2

(DOCX 23 kb)

Online Resource 3

(DOCX 273 kb)

Online Resource 4

(DOCX 14 kb)

Online Resource 5

(DOCX 13 kb)

Online Resource 6

(DOCX 15 kb)

Online Resource 7

(DOCX 15 kb)

Online Resource 8

(DOCX 20 kb)

Online Resource 9

(DOCX 13 kb)

Online Resource 10

(DOCX 20 kb)

Online Resource 11

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassart, B., Angbonga Basia, A., Titeux, H. et al. Contrasting patterns of carbon sequestration between Gilbertiodendron dewevrei monodominant forests and Scorodophloeus zenkeri mixed forests in the Central Congo basin. Plant Soil 414, 309–326 (2017). https://doi.org/10.1007/s11104-016-3130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3130-8

Keywords:

Navigation