Skip to main content

Advertisement

Log in

Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Forests play a vital role in regulation of the global carbon cycle. Mechanistically understanding how their ecosystem functioning relates to biodiversity is necessary for predicting the consequences of biodiversity loss and for setting conservation priorities. Here, we test whether carbon stocks in a subtropical evergreen broad-leaved forest in China are more strongly influenced by plant functional diversity (FD), as would be predicted by the ‘niche complementarity hypothesis’, or by community-weighted mean (CWM) functional trait values, as would be predicted by the ‘mass ratio hypothesis’.

Methods

Using data from a 24-ha plot subdivided into 400 m2 quadrats, we determined relationships of aboveground carbon (AGC) and topsoil (1–10 cm) organic carbon (SOC) to topographic variables, stem density, CWM and FD of six functional traits hypothesized to influence carbon stocks.

Results

After accounting for topographic variables and tree stem density, boosted regression tree models revealed that CWMs were the dominant driving factors for both AGC and SOC, whereas FD had negligible effects. AGC and SOC were influenced by different functional traits, with AGC responding most strongly to CWM values for wood density and maximum tree height, and SOC responding most strongly to elevation, indicating that these carbon stocks are shaped by different underlying mechanisms.

Conclusions

Our results support the mass ratio hypothesis but not the niche complementarity hypothesis. Our study implies that, when it comes to maximizing forest carbon storage, conservation priorities should focus on protection of species with traits associated to high carbon stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Wright SJ, Abu Salim K, Zambrano AMA, Alonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Butt N, Cao M, Cardenas D, Chuyong GB, Clay K, Cordell S, Dattaraja HS, Deng XB, Detto M, XJ D, Duque A, Erikson DL, Ewango CEN, Fischer GA, Fletcher C, Foster RB, Giardina CP, Gilbert GS, Gunatilleke N, Gunatilleke S, Hao ZQ, Hargrove WW, Hart TB, Hau BCH, He FL, Hoffman FM, Howe RW, Hubbell SP, Inman-Narahari FM, Jansen PA, Jiang MX, Johnson DJ, Kanzaki M, Kassim AR, Kenfack D, Kibet S, Kinnaird MF, Korte L, Kral K, Kumar J, Larson AJ, Li YD, Li XK, Liu SR, Lum SKY, Lutz JA, Ma KP, Maddalena DM, Makana JR, Malhi Y, Marthews T, Serudin RM, McMahon SM, McShea WJ, Memiaghe HR, Mi XC, Mizuno T, Morecroft M, Myers JA, Novotny V, de Oliveira AA, Ong PS, Orwig DA, Ostertag R, den Ouden J, Parker GG, Phillips RP, Sack L, Sainge MN, Sang WG, Sri-ngernyuang K, Sukumar R, Sun IF, Sungpalee W, Suresh HS, Tan S, Thomas SC, Thomas DW, Thompson J, Turner BL, Uriarte M, Valencia R, Vallejo MI, Vicentini A, Vrska T, Wang XH, Wang XG, Weiblen G, Wolf A, Xu H, Yap S, Zimmerman J (2015) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob Chang Biol 21:528–549. doi:10.1111/gcb.12712.

    Article  PubMed  Google Scholar 

  • Brassard BW, Chen HYH, Cavard X, Laganiere J, Reich PB, Bergeron Y, Pare D, Yuan ZY (2013) Tree species diversity increases fine root productivity through increased soil volume filling. J Ecol 101:210–219. doi:10.1111/1365-2745.12023.

    Article  Google Scholar 

  • Bunker DE, DeClerck F, Bradford JC, Colwell RK, Perfecto I, Phillips OL, Sankaran M, Naeem S (2005) Species loss and aboveground carbon storage in a tropical forest. Science 310: 1029–1031. doi: 10.1126/science.1117682.

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087. doi:10.1111/j.1365-2664.2011.02048.x.

    Article  Google Scholar 

  • Cao K, Rao M, Yu J, Liu X, Mi X, Chen J (2013) The phylogenetic signal of functional traits and their effects on community structure in an evergreen broad-leaved forest. Biodivers Sci 21:564–571. doi:10.3724/SP.J.1003.2013.08068. (in Chinese)

    CAS  Google Scholar 

  • Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–U113. doi:10.1038/nature09904.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415:426–429. doi:10.1038/415426a.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi:10.1038/Nature11148.

    Article  CAS  PubMed  Google Scholar 

  • Cavanaugh KC, Gosnell JS, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob Ecol Biogeogr 23:563–573. doi:10.1111/geb.12143.

    Article  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi:10.1111/j.1461-0248.2009.01285.x.

    Article  PubMed  Google Scholar 

  • Condit R (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama, and a comparison with other plots. Springer, New York

    Book  Google Scholar 

  • Conti G, Díaz S (2013) Plant functional diversity and carbon storage - an empirical test in semi-arid forest ecosystems. J Ecol 101:18–28. doi:10.1111/1365-2745.12012.

    Article  CAS  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531. doi:10.1111/j.1461-0248.2008.01164.x.

    Article  PubMed  Google Scholar 

  • De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88:243–251. doi:10.1890/0012-9658.

    Article  PubMed  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. P Natl Acad Sci USA 104: 20684–20689. doi: 10.1073/pnas.0704716104.

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. doi:10.1111/j.1365-2656.2008.01390.x.

    Article  CAS  PubMed  Google Scholar 

  • Fahey TJ, Woodbury PB, Battles JJ, Goodale CL, Hamburg SP, Ollinger SV, Woodall CW (2010) Forest carbon storage: ecology, management, and policy. Front Ecol Environ 8:245–252. doi:10.1890/080169.

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2010) Global Forest resources assessment 2010. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L, Canham C (2015) Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J Ecol 103:191–201. doi:10.1111/1365-2745.12346.

    Article  Google Scholar 

  • Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology 92:1573–1581. doi:10.1890/10-1245.1

    Article  PubMed  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320. doi:10.1111/j.1461-0248.2004.00579.x.

    Article  Google Scholar 

  • Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322. doi:10.1111/j.1365-2745.2007.01345.x.

    Article  CAS  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65. doi:10.1111/j.1365-2435.2011.01913.x.

    Article  Google Scholar 

  • Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637. doi:10.1890/03-0799.

    Article  Google Scholar 

  • Griffiths RP, Madritch MD, Swanson AK (2009) The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. For Ecol Manag 257:1–7. doi:10.1016/j.foreco.2008.08.010.

    Article  Google Scholar 

  • Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clément J-C, Hutchings M (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57. doi:10.1111/1365-2745.12014.

    Article  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. doi:10.1046/j.1365-2745.1998.00306.x.

    Article  Google Scholar 

  • Heemsbergen DA, Berg MP, Loreau M, van Haj JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306: 1019–1020. doi: 10.1126/science.1101865.

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277: 1302–1305. doi: 10.1126/science.277.5330.1302.

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol Monogr 75:3–35. doi:10.1890/04-0922.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2006) Agriculture, forestry and other land use. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Kanagawa

    Google Scholar 

  • Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202. doi:10.1038/nature10282.

    Article  CAS  PubMed  Google Scholar 

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. P Natl Acad Sci USA 104:864–869. doi:10.1073/pnas.0604666104.

    Article  CAS  Google Scholar 

  • Jonsson M, Wardle DA (2010) Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems. Biol Lett 6:116–119. doi:10.1098/rsbl.2009.0613.

    Article  PubMed  Google Scholar 

  • Jucker T, Bouriaud O, Coomes DA, Baltzer J (2015) Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct Ecol 29:1078–1086. doi:10.1111/1365-2435.12428.

    Article  Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vazquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:6707. doi:10.1038/ncomms7707.

    Article  CAS  PubMed  Google Scholar 

  • Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99:135–147. doi:10.1111/j.1365-2745.2010.01753.x.

    Article  Google Scholar 

  • Legendre P, Mi XC, Ren HB, Ma KP, MJ Y, Sun IF, He FL (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674. doi:10.1890/07-1880.1.

    Article  PubMed  Google Scholar 

  • Lin DM, Lai JS, Muller-Landau HC, Mi XC, Ma KP (2012) Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLoS One 7:e48244. doi:10.1371/journal.pone.0048244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin DM, Lai JS, Yang B, Song P, Li N, Ren HB, Ma KP (2015) Forest biomass recovery after different anthropogenic disturbances: relative importance of changes in stand structure and wood density. Eur J For Res 134:769–780. doi:10.1007/s10342-015-0888-9.

    Article  Google Scholar 

  • Liu XJ, Swenson NG, Wright SJ, Zhang LW, Song K, YJ D, Zhang JL, Mi XC, Ren HB, Ma KP (2012) Covariation in plant functional traits and soil fertility within two species-rich forests. PLoS One 7:e34767. doi:10.1371/journal.pone.0034767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005) Biodiversity: What is it, where is it, and why is it important? Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893. doi:10.1111/j.1365-2745.2008.01395.x.

    Article  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180. doi:10.1111/j.1466-8238.2010.00592.x.

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. doi:10.1111/j.1461-0248.2006.00924.x.

    Article  PubMed  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, Distribution, and protection. Science 344: 987. doi: 10.1126/Science.1246752.

  • Pla LE, Casanoves F, Di Rienzo JA (2012) Quantifying functional biodiversity. Springer, Dordrecht

    Book  Google Scholar 

  • Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016) Conservative species drive biomass productivity in tropical dry forests. J Ecol. doi:10.1111/1365-2745.12543.

    Google Scholar 

  • R Development Core Team, 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3–900051–07–0

  • Ridgeway, G (2010) Gbm: Generalized Boosted Regression Models R Package Version 1.6–3.1.

  • Ruiz-Benito P, Gomez-Aparicio L, Paquette A, Messier C, Kattge J, Zavala MA (2014) Diversity increases carbon storage and tree productivity in Spanish forests. Glob Ecol Biogeogr 23:311–322. doi:10.1111/geb.12126.

    Article  Google Scholar 

  • Ruiz-Jaen MC, Potvin C (2011) Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol 189:978–987. doi:10.1111/j.1469-8137.2010.03501.x.

    Article  PubMed  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity - Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770.

    Article  CAS  PubMed  Google Scholar 

  • Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ (2011) Soil carbon release enhanced by increased tropical forest litterfall. Nat Clim Chang 1:304–307. doi:10.1038/Nclimate1190.

    Article  CAS  Google Scholar 

  • Schumacher J, Roscher C (2009) Differential effects of functional traits on aboveground biomass in semi-natural grasslands. Oikos 118:1659–1668. doi:10.1111/j.1600-0706.2009.17711.x.

    Article  CAS  Google Scholar 

  • Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15:637–648. doi:10.1111/j.1461-0248.2012.01795.x.

    Article  PubMed  Google Scholar 

  • Stegen JC, Swenson NG, Valencia R, Enquist BJ, Thompson J (2009) Above-ground forest biomass is not consistently related to wood density in tropical forests. Glob Ecol Biogeogr 18:617–625. doi:10.1111/j.1466-8238.2009.00471.x.

    Article  Google Scholar 

  • Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evo S 45:471–493. doi:10.1146/annurev-ecolsys-120213-091917.

    Article  Google Scholar 

  • Villeger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi:10.1890/07-1206.1.

    Article  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/Nature02403.

    Article  CAS  PubMed  Google Scholar 

  • Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Diaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:3664–3674. doi:10.1890/09-2335.1.

    Article  PubMed  Google Scholar 

  • Zhang LW, Mi XC, Shao HB, Ma KP (2011) Strong plant-soil associations in a heterogeneous subtropical broad-leaved forest. Plant Soil 347:211–220. doi:10.1007/s11104-011-0839-2.

    Article  CAS  Google Scholar 

  • Zhu Y, Zhao GF, Zhang LW, Shen GC, Mi XC, Ren HB, Yu MJ, Chen JH, Chen SW, Fang T, Ma KP (2008) Community composition and structure of Gutianshan forest dynamics plot in a mid-subtropical evergreen broad-leaved forest, East China. Chinese J Plant Ecol 32: 262–273. doi: 10.3773/j.issn.1005-264x.2008.02.004. (in Chinese)

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NO.31270496), the Fundamental Research Funds for the Central Universities (106112015CDJXY210012) and the 111 Project (B13041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dunmei Lin or Keping Ma.

Additional information

Responsible Editor: Per Ambus.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Anderson-Teixeira, K.J., Lai, J. et al. Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant Soil 409, 435–446 (2016). https://doi.org/10.1007/s11104-016-2976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2976-0

Keywords

Navigation