Skip to main content

Advertisement

Log in

Plant maintenance and environmental stress. Summarising the effects of contrasting elevation, soil, and latitude on Quercus ilex respiration rates

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Determining the increase in maintenance respiration in response to stress is critical for understanding the cost of adaptation, in terms of expenditure of assimilated carbon. Here, we ask how maintenance costs vary for populations native to contrasting habitats and whether maintenance cost remains constitutive or induced in response to stress.

Methods

Two populations of Quercus ilex were selected in southern Iberian Peninsula, one growing close to the altitudinal limit and the other growing at mean elevations for the species. Maintenance respiration, growth, and structural variables were measured in leaves and fine roots. We modelled the results found here and those published for populations native to stressed (both soil and latitudinal) habitats.

Results

The maintenance respiration measured at 20 °C was higher in expanding (90 %) and in mature (35 %) leaves and in roots (78 %) of individuals growing at higher elevations. Furthermore, our meta-analysis supports that the cost of organ maintenance is higher in stressed habitats, irrespective of the stress factor.

Conclusions

As regards the whole plant metabolic design, Q. ilex seems to combine high phenotypic plasticity according to current growth conditions, and high adaptive capacity for local differentiation in response to average stress conditions in the provenance habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 Years later. Ann Bot 86:1–20. doi:10.1006/anbo.2000.1175

    Article  CAS  Google Scholar 

  • Anekonda T, Jones C, Smith BN et al (2004) Differences in physiology and growth between coastal and inland varieties of Douglas-fir seedlings in a common garden. Thermochim Acta 422:75–79. doi:10.1016/j.tca.2004.05.036

    Article  CAS  Google Scholar 

  • Ashton PMS, Berlyn GP (1994) A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus-Fagaceae) species in different light environments. Am J Bot 81:589–597. doi:10.2307/2445734

    Article  Google Scholar 

  • Atkin OK, Scheurwater I, Pons T (2006) High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Global Change Biol 12:500–515. doi:10.1111/j.1365-2486.2006.01114.x

    Article  Google Scholar 

  • Atkin OK, Turnbull MH, Zaragoza-Castells J et al (2013) Light inhibition of leaf respiration as soil fertility declines along a post-glacial chronosequence in New Zealand: An analysis using the Kok method. Plant Soil 367:163–182. doi:10.1007/s11104-013-1686-0

    Article  CAS  Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB et al (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–636. doi:10.1111/nph.13253

    Article  CAS  PubMed  Google Scholar 

  • Bouma TJ (2005) Understanding plant respiration: separating components versus a process-based approach. In: Lambers H, Ribas-Carbó M (eds) Advances in photosynthesis and respiration, vol 18. Springer, Dordrecht, pp 177–194

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cannell MGR, Thornley JHM (2000) Modelling the components of plant respiration: some guiding principles. Ann Bot 85:45–54. doi:10.1006/anbo.1999.0996

    Article  CAS  Google Scholar 

  • Cavender-Bares J, Kitajima K, Bazzaz FA (2004) Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol Monogr 74:635–662. doi:10.1890/03-4007

    Article  Google Scholar 

  • Chapin FS III, Shaver GR (1985) Arctic. In: Chabot BF, Mooney HA (eds) Physiological ecology of North American plant communities. Chapman and Hall, Nueva York, pp 16–40

    Chapter  Google Scholar 

  • Chazdon RL, Field CB (1987) Determinants of photosynthetic capacity in 6 rain-forest piper species. Oecologia 73:222–230. doi:10.1007/BF00377511

    Article  Google Scholar 

  • Corcuera L, Morales F, Abadía A et al (2005) Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula. Tree Physiol 25:599–608. doi:10.1093/treephys/25.5.599

    Article  CAS  PubMed  Google Scholar 

  • Crimmins SM, Dobrowski SZ, Greenberg JA et al (2011) Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331:324–327. doi:10.1126/science.1199040

    Article  CAS  PubMed  Google Scholar 

  • De Kok LJ, Stuiver CEE, Stulen I (1988) Impact of atmospheric H2S on plant. In: Dekok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and Global Change. Backhuys Publishers, Leiden, pp 51–63

    Google Scholar 

  • Dillaway DN, Kruger EL (2011) Leaf respiratory acclimation to climate: Comparisons among boreal and temperate tree species along a latitudinal transect. Tree Physiol 31:1114–1127. doi:10.1093/treephys/tpr097

    Article  PubMed  Google Scholar 

  • Dixon DP, Skipsey M, Grundy NM et al (2005) Stress-induced protein S-glutathionylation in arabidopsis. Plant Physiol 138:2233–2244. doi:10.1104/pp.104.058917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 25–55

    Google Scholar 

  • Field C, Berry JA, Mooney HA (1982) A portable system for measuring carbon dioxide and water vapour exchange of leaves. Plant Cell Environ 5:179–186. doi:10.1111/1365-3040.ep11571607

    Article  Google Scholar 

  • Fine PVA, Miller ZJ, Mesones I et al (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87(7 SUPPL):S150–S162. doi:10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Florez-Sarasa ID, Bouma TJ, Medrano H et al (2007) Contribution of the cytochrome and alternative pathways to growth respiration and maintenance respiration in Arabidopsis thaliana. Physiol Plant 129:143–151. doi:10.1111/j.1399-3054.2006.00796.x

    Article  CAS  Google Scholar 

  • García D, Rodríguez J, Sanz JM et al (1998) Response of two populations of Holm oak (Quercus rotundifolia Lam.) to sulfur dioxide. Ecotoxicol Environ Saf 40:42–48. doi:10.1006/eesa.1998.1640

    Article  PubMed  Google Scholar 

  • García-Nogales A, Seco JI, Linares JC, Merino J (2016) Range-wide variation in life history phenotypes: spatio-temporal plasticity across the latitudinal gradient of the evergreen oak Quercus ilex. J Biogeogr. doi:10.1111/jbi.12849

  • García-Plazaola JI, Olano JM, Hernández A et al (2003) Photoprotection in evergreen Mediterranean plants during sudden periods of intense cold weather. Trees Struct Funct 17:285–291. doi:10.1007/s00468-002-0234-y

    Google Scholar 

  • George K, Norby RJ, Hamilton JG et al (2003) Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytol 160:511–522. doi:10.1046/j.1469-8137.2003.00911.x

    Article  Google Scholar 

  • Gimeno TE, Pas B, Lemos-Filho JP et al (2009) Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. Tree Physiol 29:87–98. doi:10.1093/treephys/tpn007

    Article  PubMed  Google Scholar 

  • Gonzalez-Meler MA, Giles L, Thomas RB, Siedow JN (2001) Metabolic regulation of leaf respiration and alternative pathway activity in response to phosphate supply. Plant Cell Environ 24:205–215. doi:10.1111/j.1365-3040.2001.00674.x

    Article  CAS  Google Scholar 

  • Gratani L, Catoni R, Varone L (2013) Morphological, anatomical and physiological leaf traits of Q. ilex, P. latifolia, P. lentiscus, and M. communis and their response to Mediterranean climate stress factors. Bot Stud 54:35. doi:10.1186/1999-3110-54-35

    Article  Google Scholar 

  • Gunderson CA, Norby RJ, Wullschleger SD (2000) Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum: Laboratory and field evidence. Tree Physiol 20:87–96. doi:10.1093/treephys/20.2.87

    Article  PubMed  Google Scholar 

  • Hansen LD, Farnsworth LK, Itoga NK et al (2008) Two subspecies and a hybrid of big sagebrush: Comparison of respiration and growth characteristics. J Arid Environ 72:643–651. doi:10.1016/j.jaridenv.2007.08.011

    Article  Google Scholar 

  • Hansen LD, Thomas NR, Arnholdt-Schmitt B (2009) Temperature responses of substrate carbon conversion efficiencies and growth rates of plant tissues. Physiol Plant 137:446–458. doi:10.1111/j.13993054.2009.01287.x

    Article  CAS  PubMed  Google Scholar 

  • Hesketh JD, Baker DN, Duncan WG (1971) Simulation of growth and yield in cotton: Respiration and the carbon balance. Crop Sci 11:394–398. doi:10.2135/cropsci1971.0011183X001100030025x

    Article  Google Scholar 

  • Hikosaka K, Nagamatsu D, Ishii HS et al (2002) Photosynthesis-nitrogen relationships in species at different altitudes on Mount Kinabalu, Malaysia. Ecol Res 17:305–313. doi:10.1046/j.1440-1703.2002.00490.x

    Article  Google Scholar 

  • Jenks MA, Hasegawa PM (2007) Plant abiotic stress. Blackwell Publishing Ltd, Ames

    Google Scholar 

  • Kornfeld A, Atkin OK, Griffin KL et al (2013) Modulation of respiratory metabolism in response to nutrient changes along a soil chronosequence. Plant Cell Environ 36:1120–1134. doi:10.1111/pce.12047

    Article  CAS  PubMed  Google Scholar 

  • Laureano RG, Lazo YO, Linares JC et al (2008) The cost of stress resistance: construction and maintenance costs of leaves and roots in two populations of Quercus ilex. Tree Physiol 28:1721–1728

    Article  CAS  PubMed  Google Scholar 

  • Laureano RG, García-Nogales A, Seco JI et al (2013) Growth and maintenance costs of leaves and roots in two populations of Quercus ilex native to distinct substrates. Plant Soil 363:87–99. doi:10.1007/s11104-012-1296-2

    Article  CAS  Google Scholar 

  • Lorenzini G, Stringari S, Nali C (2002) The absence of cross tolerance between ozone and paraquat: the case of Conyza bonariensis. Phyton Ann Rei Bot 42:89–96

    CAS  Google Scholar 

  • M’Bou AT, Saint-André L, de Grandcourt A et al (2010) Growth and maintenance respiration of roots of clonal Eucalyptus cuttings: Scaling to stand-level. Plant Soil 332:41–53. doi:10.1007/s11104-009-0272-y

    Article  Google Scholar 

  • Martínez F, Lazo YO, Fernández-Galiano JM et al (2002) Root respiration and associated costs in deciduous and evergreen species of Quercus. Plant Cell Environ 25:1271–1278. doi:10.1046/j.1365-3040.2002.00903.x

    Article  Google Scholar 

  • Martínez F, Laureano RG, Merino J (2003) Alternative respiration in seven Quercus spp. of SW Spain. J Med Ecol 4:9–14

    Google Scholar 

  • McCree KJ (1970) An equation for the rate of respiration of white clover plants growth Ander controlled condictions. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. Centre of Agricultural Publishing and Documentation, Wageningen, pp 221–229

    Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62:5311–5333. doi:10.1093/jxb/err166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino J, Field C, Mooney HA (1982) Construction and maintenance costs of mediterranean-climate evergreen and deciduous leaves I. Growth and CO2 exchange analysis. Oecologia 53:208–213. doi:10.1007/BF00545665

    Article  Google Scholar 

  • Merino J, Field C, Mooney HA (1984) Construction and maintenance costs of mediterranean-climate evergreen and deciduous leaves. II. Biochemical pathway analysis. Acta Oecologica/Oecologia Plant 5:211–229

    CAS  Google Scholar 

  • Milla R, Reich PB (2007) The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proc R Soc B Biol Sci 274:2109–2114. doi:10.1098/rspb.2007.0417

    Article  Google Scholar 

  • Millenaar FF, Lambers H (2003) The alternative oxidase: in vivo regulation and function. Plant Biol 5:2–15. doi:10.1055/s-2003-37974

    Article  CAS  Google Scholar 

  • Mitchell KA, Bolstad PV, Vose JM (1999) Interspecific and environmentally induced variation in foliar dark respiration among eighteen southeastern deciduous tree species. Tree Physiol 19:861–870

    Article  PubMed  Google Scholar 

  • Moreira X, Mooney KA, Rasmann S et al (2014) Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. Ecol Lett 17:537–546. doi:10.1111/ele.12253

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Portsmuth A, Tena D et al (2007) Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann Bot 100:283–303. doi:10.1093/aob/mcm107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ, Cobb ED, Niinemets Ü et al (2007) “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proc Natl Acad Sci U S A 104:8891–8896. doi:10.1073/pnas.0701135104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425. doi:10.1111/j.1365-3040.2005.01476.x

    Article  CAS  PubMed  Google Scholar 

  • Noguchi K, Yoshida K (2008) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8:87–99. doi:10.1016/j.mito.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  • Olano JM, Almería I, Eugenio M, Von Arx G (2013) Under pressure, how a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct Ecol 27:1295–1303. doi:10.1111/1365-2435.12144

    Article  Google Scholar 

  • Peguero-Pina JJ, Sancho-Knapik D, Barrón E et al (2014) Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness. Ann Bot 114:301–313. doi:10.1093/aob/mcu108

    Article  PubMed  PubMed Central  Google Scholar 

  • Penning de Vries FWT (1975) The cost of maintenance processes in plant cells. Ann Bot 39:77–92

    CAS  Google Scholar 

  • Pérez-Priego O, Testi L, Kowalski AS et al (2014) Aboveground respiratory CO2 effluxes from olive trees (Olea europaea L.). Agrofor Syst 88:245–255. doi:10.1007/s10457-014-9672-y

    Article  Google Scholar 

  • Pinheiro J., Bates D., DebRoy S., Sarkar D. & R Core Team (2016). nlme: linear and nonlinear mixed effects models. R package version 3.1-127. Available at: http://CRAN.R-project.org/package=nlme

  • Purvis AC (1997) Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol Plant 100:165–170. doi:10.1111/j.1399-3054.1997.tb03468.x

    Article  CAS  Google Scholar 

  • Rakhmankulova ZF, Ramazanova GA, Mustafina AR et al (2001) Assessment of the respiratory costs of adaptation in plant species that differ in their responses to insufficient and excessive mineral nutrition. Russ J Plant Physiol 48:651–656. doi:10.1023/A:1016768321554

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101:11001–11006. doi:10.1073/pnas.0403588101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich PB, Oleksyn J, Tjoelker MG (1996) Needle respiration and nitrogen concentration in Scots Pine populations from a broad latitudinal range: a common garden test with field-grown trees. Funct Ecol 10:768–776

    Article  Google Scholar 

  • Reich PB, Walters MB, Tjoelker MG et al (1998) Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct Ecol 12:395–405. doi:10.1046/j.1365-2435.1998.00209.x

    Article  Google Scholar 

  • Reich PB, Tjoelker MG, Pregitzer KS et al (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol Lett 11:793–801. doi:10.1111/j.1461-0248.2008.01185.x

    Article  PubMed  Google Scholar 

  • Reinhardt K, Castanha C, Germino MJ et al (2011) Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine. Tree Physiol 31:615–625. doi:10.1093/treephys/tpr055

    Article  PubMed  Google Scholar 

  • Ribas-Carbo M, Aroca R, Gonzàlez-Meler MA, Irigoyen JJ, Sánchez-Díaz M (2000) The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity. Plant Physiol 122:199–204. doi:10.1104/pp.122.1.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas-Carbo M, Taylor NL, Giles L et al (2005) Effects of water stress on respiration in soybean leaves. Plant Physiol 139:466–473. doi:10.1111/gcb.13035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Searle SY, Bitterman DS, Thomas S et al (2011) Respiratory alternative oxidase responds to both low- and high-temperature stress in Quercus rubra leaves along an urban–rural gradient in New York. Funct Ecol 25:1007–1017. doi:10.1111/j.1365-2435.2011.01875.x

    Article  Google Scholar 

  • Semikhatova OA, Ivanova TI, Kirpichnikova OV (2009) Respiration rate of arctic plants as related to the production process. Russ J Plant Physiol 56:306–315. doi:10.1134/S1021443709030029

    Article  CAS  Google Scholar 

  • Sieger SM, Kristensen BK, Robson CA et al (2005) The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells. J Exp Bot 56:1499–1515. doi:10.1093/jxb/eri146

    Article  CAS  PubMed  Google Scholar 

  • Stuiver CEE, De Kok LJ, Kuiper PJC (1992) Freezing tolerance and biochemical-changes in wheat shoots as affected by H2S fumigation. Plant Physiol Biochem 30:47–55

    CAS  Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27:1047–1054. doi:10.1111/j.1365-3040.2004.01209.x

    Article  CAS  Google Scholar 

  • Tausz M, Landmesser H, Posch S et al (2007) Multivariate patterns of antioxidative and photoprotective defence compounds in spruce needles at two Central European Forest Sites of different elevation. Environ Monit Assess 128:75–82. doi:10.1007/s10661-006-9416-1

    Article  CAS  PubMed  Google Scholar 

  • Turnbull MH, Whitehead D, Tissue DT et al (2001) Responses of leaf respiration to temperature and leaf characteristics in three deciduous tree species vary with site water availability. Tree Physiol 21:571–578

    Article  CAS  PubMed  Google Scholar 

  • Van Oijen M, Schapendonk A, Höglind M (2010) On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation. Ann Bot 105:793–797. doi:10.1093/aob/mcq039

    Article  PubMed  PubMed Central  Google Scholar 

  • Villar R, Ruiz-Robleto J, Ubera JL et al (2013) Exploring variation in leaf mass per area (LMA) from leaf to cell: An anatomical analysis of 26 woody species. Am J Bot 100:1969–1980. doi:10.3732/ajb.1200562

    Article  PubMed  Google Scholar 

  • Vose JM, Ryan MG (2002) Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. Global Change Biol 8:182–193. doi:10.1046/j.1365-2486.2002.00464.x

    Article  Google Scholar 

  • Watanabe CK, Yamori W, Takahashi S et al (2016) Mitochondrial alternative pathway-associated photoprotection of photosystem II is related to the photorespiratory pathway. Plant Cell Physiol. doi:10.1093/pcp/pcw036

    Google Scholar 

  • Westerman S, De Kok LJ, Stuiver CEE, Stulen I (2000) Interaction between metabolism of atmospheric H2S in the shoot and sulfate uptake by the roots of curly kale (Brassica oleracea). Physiol Plant 109:443–449. doi:10.1034/j.1399-3054.2000.100411.x

    Article  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Atkin OK et al (2006) Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: Evidence from comparisons across 20 sites. New Phytol 169:309–319. doi:10.1111/j.1469-8137.2005.01590.x

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger SD, Hanson PJ, Edwards GS (1996) Growth and maintenance respiration in leaves of northern red oak seedlings and mature trees after 3 years of ozone exposure. Plant Cell Environ 19:577-584 doi:10.1111/j.1365-3040.1996.tb00391.x

  • Zaragoza-Castells J, Sánchez-Gómez D, Hartley IP et al (2008) Climate-dependent variations in leaf respiration in a dry-land, low productivity Mediterranean forest: The importance of acclimation in both high-light and shaded habitats. Funct Ecol 22:172–184. doi:10.1111/j.1365-2435.2007.01355.x

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R (statistics for biology and health). Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by Spanish Ministry of Science and Innovation (project CGL2010.19824: ENCINAS) and European Union project (project FEDER 0087 TRANSHABITAT). A.G.N. acknowledges a PhD grant from Spanish Ministry of Education. Special thanks to Dr. de Kok for his help with thiols concentration analysis. For laboratory assistance, we thank Jesus Rodríguez, as well as Rafael Espinar and Daniel Vázquez for their contribution in field and lab work. We are grateful to the Laboratorio de la Consejería de Agricultura, Pesca y Alimentación (Trigueros, Huelva) (Junta de Andalucía) for the soil analysis, to Dr. Xavier Niell for his help with nitrogen analysis, to Hedwig Schwarzer from The Red de Jardines Botánicos y Micología en Espacios Naturales (Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía) for her valuable help with the site locations and to Dr. Rafael Villar for a critical examination of the manuscript. We also thank the Editor and three anonymous referees that helped to improve the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Merino.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laureano, R.G., García-Nogales, A., Seco, J.I. et al. Plant maintenance and environmental stress. Summarising the effects of contrasting elevation, soil, and latitude on Quercus ilex respiration rates. Plant Soil 409, 389–403 (2016). https://doi.org/10.1007/s11104-016-2970-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2970-6

Keywords

Navigation