Skip to main content

Advertisement

Log in

Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

Desert herbs, a crucial component of desert ecosystems, are sensitive to water and nutrient availability and therefore to environmental change. We aimed to determine element concentrations in desert herbs and their relationships with life form, taxonomy, climate, and soil environment.

Methods

We measured concentrations of 11 elements in shoots and roots of 26 dominant desert herb species from 45 sites in a temperate desert.

Results

Shoots of desert herbs had greater concentrations of elements related to photosynthesis and water use efficiency (N, P, Mg, K) than roots. Concentrations of these elements (except N and P) were also greater in annual herbs than in perennial herbs. Greater Mg, K, and Na concentrations were observed in shoots of Chenopodiaceae (mostly C4 species) than in Poaceae (mostly C3 species). Soil properties and taxonomy explained 3.6–26 % and 2.8–24 % of the variation in shoot element concentrations, respectively, whereas climate factors explained only 0.05–6.5 % of the variation.

Conclusions

Water and nutrient availability, which are affected by environmental change, influence concentrations of mineral elements in desert plants and their biogeochemical cycles in desert ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol Syst 39:153–170

    Article  Google Scholar 

  • Belnap J (2011) Biological phosphorus cycling in dryland regions. In: BünemannE OA, Frossard E (eds) Phosphorus in action. Springer, Berlin Heidelberg, pp 371–406

    Chapter  Google Scholar 

  • Broadley M, Brown P, Cakmak I, Ma JF, Rengel Z, Zhao F (2012) Beneficial elements. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London, pp 249–269

    Chapter  Google Scholar 

  • Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp Bot 55:321–336

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS (1980) The mineral-nutrition of wild plants. Annu Rev Ecol Evol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineralnutrition of higherplants. Annu Rev Plant Physiol Plant Mol Biol 31:239–298

    Article  CAS  Google Scholar 

  • Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005) Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86:12–19

    Article  Google Scholar 

  • Day AD, Ludeke KL (1993) Plant nutrients in desert soils. In: Day AD, Ludeke KL (eds) Plant nutrients in desert environments. Springer, Berlin Heidelberg, pp 53–56

    Chapter  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285–299

    Article  PubMed  Google Scholar 

  • Foulds W (1993) Nutrient concentrations of foliage and soil in south-western Australia. New Phytol 125:529–546

    Article  CAS  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Rivas-Ubach A, Oravec M, Vecerova K, Urban O, Jentsch A, Kreyling J, Beierkuhnlein C, Parella T, Peñuelas J (2014) Opposite metabolic responses of shoots and roots to drought. Sci Rep 4:6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garten CT (1978) Multivariate perspectives on ecology of plant mineral element composition. Am Nat 112:533–544

    Article  CAS  Google Scholar 

  • Gutterman Y (1994) Strategies of seed dispersal and germination in plants inhabiting deserts. Bot Rev 60:373–425

    Article  Google Scholar 

  • Gutterman Y (2002) The desert biome, survival adaptations and strategies of annual plant species. In: Gutterman Y (ed) Survival strategies of annual desert plants. Springer, Berlin Heidelberg, pp 1–36

    Chapter  Google Scholar 

  • Han FX, Singer A (2007) Solution chemistry of trace elements in arid zone soils. In: Han FX (ed) Biogeochemistry of trace elements in arid environments. Springer, Netherlands, pp 69–105

    Chapter  Google Scholar 

  • Han WX, Fang JY, Guo DL, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  CAS  PubMed  Google Scholar 

  • Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett 14:788–796

    Article  CAS  PubMed  Google Scholar 

  • Han WX, Chen YH, Zhao FJ, Tang LY, Jiang RF, Zhang FS (2012) Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Glob Ecol Biogeogr 21:376–382

    Article  Google Scholar 

  • Handmer J, Honda Y, Kundzewicz ZW, Arnell N, Benito G, Hatfield J, Mohamed IF, Peduzzi P, Wu S, Sherstyukov B, Takahashi K, Yan Z (2012) Changes in impacts of climate extremes: human systems and ecosystems. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge and New York, pp 231–290

    Google Scholar 

  • Hao Z, Kuang Y, Kang M (2014) Untangling the influence of phylogeny, soil and climate on leaf element concentrations in a biodiversity hotspot. Funct Ecol 29:165–176

    Article  Google Scholar 

  • Hartley A, Barger N, Belnap J, Okin GS (2007) Dryland ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cylcling in terrestrial ecosystems. Springer, Berlin, pp 271–307

    Chapter  Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, White P (2012) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London, pp 135–189

    Chapter  Google Scholar 

  • He MZ (2010) Environmental effects on distribution and composition of desert vegetation in Alxa Plateau: III. Correlation between plant functional types diversity and environmental factors (In Chinese with English abstract). J Desert Res 30:278–286

    Google Scholar 

  • He MZ, Dijkstra FA (2014) Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 204:924–931

    Article  CAS  PubMed  Google Scholar 

  • He MZ, Dijkstra FA, Zhang K, Li XR, Tan HJ, Gao YH, Li G (2014) Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability. Sci Rep 4:6932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He MZ, Zhang ZS, Li XJ, Jia RL, Zhang JG, Zheng JG (2010) Environmental effects on distribution and composition of desert vegetations in Alxa Plateau: Correlation between C4 plants distribution and environmental factors (In Chinesewith English abstract). J Desert Res 30:57–62

    CAS  Google Scholar 

  • Integrative Investigation Team for Vegetation of Inner Mongolia (1985) Vegetation of inner Mongolia (in Chinese). Science Press, Beijing

    Google Scholar 

  • John MK (1970) Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci 109:214–220

    Article  CAS  Google Scholar 

  • Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 168:E103–E122

    Article  PubMed  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Bigham JM (ed) Methods of soil analysis. Part 3. Chemical methods soil. Science society of america, american society of agronomy. Wis, Madison, pp 869–919

    Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Li A, Guo DL, Wang ZQ, Liu HY (2010) Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern. Funct Ecol 24:224–232

    Article  Google Scholar 

  • Li XH, Li XL, Jiang DM, Liu ZM, Yu QH (2008) Annual plants in arid and semi-arid desert regions. Front Biol China 3:259–264

    Article  Google Scholar 

  • Liu G, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010) Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol 188:543–553

    Article  PubMed  Google Scholar 

  • Ludwig JA, Cunningham GL, Whitson PD (1988) Distribution of annual plants in north-american deserts. J Arid Environ 15:221–227

    Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Plant nutrients. In: Mengel K, Kirkby EA (eds) Principles of plant nutrition. Springer, Netherlands, pp 1–13

    Chapter  Google Scholar 

  • Mooney HA, Ehleringer J, Berry JA (1976) High photosynthetic capacity of a winter annual in Death Valley. Science 194:322–324

    Article  CAS  PubMed  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Evol Syst 4:25–51

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101:11001–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rundel PW, Nobel PS (1991) Structure and function in desert root systems. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell, Oxford, pp 349–378, Spec Publ no 10, Br Ecol Soc

    Google Scholar 

  • Sardans J, Janssens IA, Alonso R, Veresoglou SD, Rillig MC, Sanders TGM, Carnicer J, Filella I, Farré-Armengol G, Peñuelas J (2014) Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob Ecol Biogeogr 24:240–255

    Article  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012) The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1–39

    Article  Google Scholar 

  • Thompson KEN, Parkinson JA, Band SR, Spencer RE (1997) A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytol 136:679–689

    Article  CAS  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR, Thompson JA, McNicol JW, Crawley MJ, Poulton PR, Johnston AE (2012) Testing the distinctness of shoot ionomes of angiosperm families using the rothamsted park grass continuous Hay experiment. New Phytol 196:101–109

    Article  CAS  PubMed  Google Scholar 

  • Whitford WG (2002) Ecology of desert systems. Academic Press, San Diego

    Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    Article  PubMed  Google Scholar 

  • Yang X, Tang ZY, Ji CJ, Liu HY, Ma WH, Mohhamot A, Shi ZY, Sun W, Wang T, Wang XP, Wu X, Yu SL, Yue M, Zheng CY (2014) Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China. Sci Rep 4:5448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SB, Zhang JL, Slik JWF, Cao KF (2012) Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Glob Ecol Biogeogr 21:809–818

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Philip John White for his comments and editorial assistance and to two anonymous referees for their valuable comments to an earlier version of this manuscript. This work was funded by the National Basic Research Program of China (No.2013CB429902), the National Natural Science Foundation of China (No.41101054), and Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (No. 2015VEB068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhu He.

Additional information

Responsible Editor: Philip John White.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 20 kb)

Table S2

(DOCX 18 kb)

Table S3

(DOCX 18 kb)

Table S4

(DOCX 26 kb)

Table S5

(DOCX 19 kb)

Table S6

(DOCX 17 kb)

Table S7

(DOCX 20 kb)

Fig. S1

(DOCX 508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Dijkstra, F.A., Zhang, K. et al. Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant Soil 398, 339–350 (2016). https://doi.org/10.1007/s11104-015-2669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2669-0

Keywords

Navigation