Skip to main content
Log in

Effect of the plant flavonoid luteolin on Ensifer meliloti 3001 phenotypic responses

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The establishment of a successful symbiosis between the nitrogen-fixing bacterium Ensifer meliloti and compatible host legumes (Medicago spp.) depends on a complex molecular signal exchange. The early stage of signaling involves the release from plant roots of the flavonoid luteolin, which in turn induces the expression of rhizobia nodulation (nod) genes required for root infection and nodule development. To date, the bacterial response to the luteolin perception has been characterized in detail as far as gene expression is concerned. Nevertheless, despite this molecular information, a global view on E. meliloti phenotypes affected by the plant signal luteolin is still lacking. Therefore, an extensive phenotypic investigation of luteolin effect on the nitrogen-fixing E. meliloti 3001 has been performed.

Methods

A thousand different growth conditions, including sensitivity to osmolites, pH stresses, antibiotics and toxic compounds, were tested by the application of the high-throughput Phenotype MicroArray (PM) technology, as well as by several dedicated assays to evaluate growth stimulation, motility, biofilm formation, N-acyl homoserine lactones and Indole-3- acetic acid (IAA) production.

Results

Results revealed that the plant signal luteolin affected a wide spectrum of E. meliloti 3001 phenotypes. E. meliloti 3001 displayed an enhanced resistance phenotype in the presence of luteolin toward a broad set of chemicals including several antibiotics, toxic ions, respiration inhibitors, membrane damagers, DNA intercalants and other potential antimicrobial agents. Moreover, the presence of luteolin significantly reduced overall AHLs production, as well as the lag phase in relation to the starting cellular density, the motility and biofilm formation under nutrient-limited growth conditions. An effect on E. meliloti indole-3-acetic acid (IAA) production was also detected in vitro as a response to luteolin.

Conclusions

Overall, these findings suggest that the plant signal luteolin triggers a broad response in E. meliloti 3001, which was shown to be dependent on nutritional conditions sensed by the bacterium, pointing out a wide role in modifying rhizobial phenotypes, possibly in relation to plant root association and then symbiotic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotection. New Phytol 186:786–793

    Article  CAS  PubMed  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol-S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Ampe F, Kiss E, Sabourdy F, Batut J (2003) Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol 4:R15

    Article  PubMed  PubMed Central  Google Scholar 

  • Ardissone S, Noel KD, Klement M, Broughton WJ, Deakin WJ (2011) Synthesis of the flavonoid-induced lipopolysaccharide of Rhizobium sp strain NGR234 requires rhamnosyl transferases encoded by genes rgpF and wbgA. Mol Plant Micr In 24:1513–1521

    Article  CAS  Google Scholar 

  • Arioli S, Guglielmetti S, Amalfitano S, Viti C, Marchi E, Decorosi F, Giovannetti L, Mora D (2014) Characterization of tetA-like gene encoding for a major facilitator superfamily efflux pump in Streptococcus thermophilus. FEMS Microbiol Lett 355:61–70

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Park LC (1993) Handbook of microbiological media, London

  • Barnett MJ, Tolman CJ, Fisher RF, Long SR (2004) A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Nat Ac Sci USA 101:16636–16641

    Article  CAS  Google Scholar 

  • Batista JSD, Hungria M (2012) Proteomics reveals differential expression of proteins related to a variety of metabolic pathways by genistein-induced Bradyrhizobium japonicum strains. J Proteome 75:1211–1219

    Article  CAS  Google Scholar 

  • Becker A, Overloper A, Schluter JP, Reinkensmeier J, Robledo M, Giegerich R, Narberhaus F, Evguenieva-Hackenberg E, Narberhaus F (2014) Riboregulation in plant-associated alpha-proteobacteria. RNA Biol 11:550–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biondi EG, Tatti E, Comparini D, Giuntini E, Mocali S, Giovannetti L, Bazzicalupo M, Mengoni A, Viti C (2009) Metabolic capacity of Sinorhizobium (Ensifer) meliloti strains as determined by phenotype MicroArray analysis. Appl Environ Microbiol 75:5396–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broughton WJ, Hanin M, Relic B, Kopcinska J, Golinowski W, Simsek S, Ojanen-Reuhs T, Reuhs B, Marie C, Kobayashi H, Bordogna B, Le Quere A, Jabbouri S, Fellay R, Perret X, Deakin WJ (2006) Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp strain NGR234-legume symbioses. J Bacteriol 188:3654–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caetano-Anolles G, Cristestes DK, Bauer WD (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164–3169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capela D, Carrere S, Batut J (2005) Transcriptome-based identification of the Sinorhizobium meliloti NodD1 regulon. Appl Environ Microbiol 71:4910–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • diCenzo GC, MacLean A, Milunovic B, Golding GB, Finan T (2014) Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genet 10: e1004742.

  • Chen PJ, Wei TC, Chang YT, Lin LP (2004) Purification and characterization of carboxymethyl cellulase from Sinorhizobium fredii. Bot Bull Acad Sinica 45:111–118

    CAS  Google Scholar 

  • Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41:1–62

    Article  CAS  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  CAS  PubMed  Google Scholar 

  • Cosme AM, Becker A, Santos MR, Sharypova LA, Santos PM, Moreira LM (2008) The outer membrane protein TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial resistance, and symbiosis. Mol Plant-Microbe Interact 21:947–957

    Article  CAS  PubMed  Google Scholar 

  • Dakora F, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Del Val C, Rivas E, Torres-Quesada O, Toro N, Jimenez-Zurdo JI (2007) Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol Microbiol 66:1080–1091

    Article  PubMed  PubMed Central  Google Scholar 

  • Denarie J, Cullimore J (1993) Lipo-oligosaccharide nodulation factors - a minireview new class of signaling molecules mediating recognition and morphogenesis. Cell 74:951–954

    Article  CAS  PubMed  Google Scholar 

  • Dusha I, Kondorosi A (1993) Genes at different regulatory levels are required for the ammonia control of nodulation in Rhizobium meliloti. Mol Gen Genet 240:435–444

    CAS  PubMed  Google Scholar 

  • Eda S, Mitsui H, Minamisawa K (2011) Involvement of the smeAB multidrug efflux pump in resistance to plant antimicrobials and contribution to nodulation competitiveness in Sinorhizobium meliloti. Appl Environ Microbiol 77:2855–2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RF, Long SR (1993) Interactions of nodd at the nod box - nodd binds to 2 distinct sites on the same face of the helix and induces a bend in the Dna. J Mol Biol 233:336–348

    Article  CAS  PubMed  Google Scholar 

  • Galan JE, Lara-Tejero M, Marlovits TC, Wagner S (2014) Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Ann Rev Microbiol 68:415–438

    Article  CAS  Google Scholar 

  • Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Land M, Hauser L, Woyke T, Mikhailova N, Ivanova N, Daligault H, Bruce D, Detter C, Tapia R, Han C, Teshima H, Mocali S, Bazzicalupo M, Biondi EG (2011) Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics 12:235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834

    Article  CAS  PubMed  Google Scholar 

  • Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Pasayo R, Martinez-Romero E (2000) Multiresistance genes of Rhizobium etli CFN42. Mol Plant-Microbe Interact 13:572–577

    Article  CAS  PubMed  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indole-acetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerreiro N, Redmond JW, Rolfe BG, Djordjevic MA (1997) New rhizobium leguminosarum flavonoid-induced proteins revealed by proteome analysis of differentially displayed proteins. MPMI 10:506–516

    Article  CAS  PubMed  Google Scholar 

  • Hartwig UA, Phillips DA (1991) Release and modification of Nod-gene-inducing flavonoids from alfalfa seeds. Plant Physiol 95:804–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwig UA, Joseph CM, Phillips DA (1991) Flavonoids released naturally from alfalfa seeds enhance growth-rate of Rhizobium meliloti. Plant Physiol 95:797–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Honma MA, Asomaning M, Ausubel FM (1990) Rhizobium meliloti nodD genes mediate host-specific activation of nodABC. J Bacteriol 172:901–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Zurdo JI, Valverde C, Becker A (2013) Insights into the noncoding RNome of nitrogen-fixing endosymbiotic alpha-proteobacteria. Mol Plant-Microbe Interact 26:160–167

    Article  CAS  PubMed  Google Scholar 

  • Kapulnik Y, Cecillia MJ, Philipps DA (1987) Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol 84:1193–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatri B, Fielder M, Jones G, Newell W, Abu-Oun M, Wheeler PL (2013) High throughput phenotypic analysis of Mycobacterium tuberculosis and Mycobacterium bovis strains' metabolism using biolog phenotype microarrays. PLoS One, 8:e52673.

  • Krol E, Becker A (2014) Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals. PNAS 111(29):10702–10707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang K, Lindemann A, Hauser F, Gottfert M (2008) The genistein stimulon of Bradyrhizobium japonicum. Mol Gen Genomics 279:203–211

    Article  CAS  Google Scholar 

  • Le Quere AJL, Deakin WJ, Schmeisser C, Carlson RW, Streit WR, Broughton WJ, Forsberg LS (2006) Structural characterization of a K-antigen capsular polysaccharide essential for normal symbiotic infection in rhizobium sp NGR234 - deletion of the rkpMNO locus prevents synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-non-2-ulosonic acid. J Biol Chem 281:28981–28992

    Article  PubMed  Google Scholar 

  • Le Rudulier D, Storm AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224(4653):1064–1068

    Article  PubMed  Google Scholar 

  • Llamas I, Keshavan N, Gonzalez JE (2004) Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones. Appl Environ Microbiol 70:3715–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SR (2001) Genes and signals in the rhizobium-legume symbiosis. Plant Physiol 125:69–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Baena FJ, Vinardell JM, Perez-Montano F, Crespo-Rivas JC, Bellogin RA, Espuny MR, Ollero FJ (2008) Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology-Sgm 154:1825–1836

    Article  CAS  Google Scholar 

  • Lynch D, O'Brien J, Welch T, Clarke P, Cuiv PO, Crosa JH, O'Connell M (2001) Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol 183:2576–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandon K, Østerås M, Boncompagni E, Trinchant J, Spennato G, Poggi MC, Le Rudulier D (2003) Molecular biology of osmoregulation. Mol Plant-Microbe Interact 16:709–719

    Article  CAS  PubMed  Google Scholar 

  • Mateos PF, Baker D, Petersen M, Velazquez E, Jimenez JI, Martinez-Molina E, Squartini A, Orgambide G, Hubbell DH, Dazzo FB (2001) Erosion of root epidermal cell walls by rhizobium polysaccharide-degrading enzymes as related to primary host infection in the rhizobium-legume symbiosis. Can J Microbiol 47:475–487

    CAS  PubMed  Google Scholar 

  • McIntosh M, Meyer S, Becker A (2009) Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Mol Microbiol 74:1238–1256

    Article  CAS  PubMed  Google Scholar 

  • Mnasri B, Badri Y, Saidi S, de Lajudie P, Mhamdi R (2009) Symbiotic diversity of Ensifer meliloti strains recovered from various legume species in Tunisia. Syst Appl Microbiol 32:583–592

    Article  CAS  PubMed  Google Scholar 

  • Nievas F, Bogino P, Sorroche F, Giordano W (2012) Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia. Sensors 12:2851–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogales J, Bernabeu-Roda L, Cuellar V, Soto MJ (2012) ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti. J Bacteriol 194:2027–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to study of biofilms. Meth Enzimol 310:91–109

    Article  Google Scholar 

  • Parniske M, Ahlborn B, Werner D (1991) Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J Bacteriol 173:3432–3439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peck MC, Fisher RF, Bliss R, Long SR (2013) Isolation and characterization of mutant Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin. J Bacteriol 195:3714–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Montano F, Guasch-Vidal B, Gonzalez-Barroso S, Lopez-Baena FJ, Cubo T, Ollero FJ, Gil-Serrano AM, Rodriguez-Carvajal MA, Bellogin RA, Espuny MR (2011) Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Res Microbiol 162:715–723

    Article  CAS  PubMed  Google Scholar 

  • Perez-Montano F, Jimenez-Guerrero I, Del CP, Baena-Ropero I, Lopez-Baena FJ, Ollero FJ, Bellogin R, Lloret J and Espuny R (2014) The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv osumi, is regulated by quorum sensing systems and inducing flavonoids via NodD1. PLoS One 9:e105901.

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persmark M, Pittman P, Buyer JS, Schwyn B, Gill PR, Neilands JB (1993) Isolation and structure of rhizobactin-1021, a siderophore from the alfalfa symbiont rhizobium-meliloti 1021. J Am Chem Soc 115:3950–3956

    Article  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  CAS  PubMed  Google Scholar 

  • Peters NK, Frost JW, Long SR (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 88:396–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pocard JA, Vincent N, Boncompagni E, Smith LT, Poggi MC, Le Rudulier D (1997) Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34. Microbiology 143:1369–1379

    Article  CAS  PubMed  Google Scholar 

  • Rossbach S, Kunze K, Albert S, Zehner S, Gottfert M (2014) The Sinorhizobium meliloti EmrAB efflux system is regulated by flavonoids through a TetR-like regulator (EmrR). Mol Plant-Microbe Interact 27:379–387

    Article  CAS  PubMed  Google Scholar 

  • Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrere S, Sallet E, Courcelle E, Moreau S, Debelle F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77:817–837

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Contreras M, Bauer WD, Gao MS, Robinson JB, Downie JA (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos T Roy Soc B 362:1149–1163

    Article  CAS  Google Scholar 

  • Santos R, Herouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol Plant-Microbe Interact 14:86–89

    Article  CAS  PubMed  Google Scholar 

  • Schluter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A (2013) Global mapping of transcription start sites and promoter motifs in the symbiotic alfa-proteobacterium Sinorhizobium meliloti 1021. BMC Genomics 14:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quere A, Wollherr A, Heinemeyer I, Morgenstern B, Pommerening-Roser A, Flores M, Palacios R, Brenner S, Gottschalk G, Schmitz RA, Broughton WJ, Perret X, Strittmatter AW, Streit WR (2009) Rhizobium sp strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 75:4035–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  CAS  PubMed  Google Scholar 

  • Smith MJ, Shoolery JN, Schwyn B, Holden I, Neilands JB (1985) Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. J Am Chem Soc 107:1739–1743

    Article  CAS  Google Scholar 

  • Spaink HP (1996) Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Crit Rev Plant Sci 15:559–582

    CAS  Google Scholar 

  • Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9

    Article  CAS  PubMed  Google Scholar 

  • Strauss MLA, Jolly NP, Lambrechts MG, van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J ApplMicrobiol 91:182–190

    CAS  Google Scholar 

  • Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wroblewski H, Blanco C, Bernard (1994) Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J Bacteriol 176:5210–5217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648

    Article  CAS  PubMed  Google Scholar 

  • Tolin S, Arrigoni G, Moscatiello R, Masi A, Navazio L, Sablok G, Squartini A (2013) Quantitative analysis of the naringenin-inducible proteome in Rhizobium leguminosarum by isobaric tagging and mass spectrometry. Proteomics 13:1961–1972

    Article  CAS  PubMed  Google Scholar 

  • Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P, Rajaonson S, Diallo B, Adeline Mol A, Baucher M, El Jaziri M (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAOI. Microbiology 157:2120–2132

    Article  CAS  PubMed  Google Scholar 

  • Veliz-Vallejos DF, van Noorden GE, Yuan MQ, Mathesius U (2014) A Sinorhizobium meliloti specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front in Plant Sci 5

  • Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291

    Article  CAS  PubMed  Google Scholar 

  • Vincent J M 1970 A manual for the practical study of root-nodule bacteria (IBP handbook no. 15). Blackwell Scientific Publications, Oxoford, UK.

  • Viti C, Decorosi F, Marchi E, Galardini M, Giovannetti L (2015) High-throughput phenomics. Methods Mol Biol 1231:99–123

    Article  CAS  PubMed  Google Scholar 

  • Wei XM, Bauer WD (1998) Starvation-induced changes in motility, chemotaxis, and flagellation of Rhizobium meliloti. Appl Environ Microbiol 64:1708–1714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GSAB (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192

    Article  CAS  PubMed  Google Scholar 

  • Young JPW, Johnston AWB (1989) The evolution of specificity in the legume Rhizobium symbiosis. Trends Ecol Evol 4:341–349

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Anke Becker and Matthew McIntosh (LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Germany) for kindly providing the analyzed E . meliloti 3001 strain and its 3001 sinIsinR mutant, and to Miguel Camara (Faculty of Medicine & Health Sciences-Centre for Biomolecular Sciences, University of Nottingham, UK) for kindly providing the bioreporter E. coli strain JM109 pSB1142. Marco Rinaldo Oggioni is gratefully acknowledged for critical reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Viti.

Additional information

Responsible Editor: Katharina Pawlowski.

Electronic supplementary material

ESM 1

Phenotype MicroArray (PM) analysis on metabolic panels (PM1-2–3–9–10). Area of the PM kinetic curves obtained for each condition after 96 h incubation and the parameter Δarea (as defined in Materials and Methods) used to identify different responses in presence of luteolin. (XLSX 39 kb)

ESM 1

Phenotype MicroArray (PM) analysis on chemical sensitivity panels (PM11-20). IC50 values obtained for each tested chemical after 96 h incubation in presence and absence of luteolin and the parameter ΔIC50 used to compare the phenotypic profiles. (XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spini, G., Decorosi, F., Cerboneschi, M. et al. Effect of the plant flavonoid luteolin on Ensifer meliloti 3001 phenotypic responses. Plant Soil 399, 159–178 (2016). https://doi.org/10.1007/s11104-015-2659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2659-2

Keywords

Navigation