Skip to main content
Log in

The chemical composition of native organic matter influences the response of bacterial community to input of biochar and fresh plant material

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

To investigate how the chemical composition of native organic matter of two contrasting soils varies with inputs of biochar and fresh material (including plant roots) and how these underlying changes influence microbial community structure.

Methods

Corn stover (CS) and CS-derived biochars produced at 350 °C and 550 °C were applied at a dose of 7.2 t C ha−1 to two contrasting soils—an Alfisol and an Andisol. After 295 days of incubation, two undisturbed subsamples from each pot were taken: (i) in one, lucerne (Medicago sativa L.) was seeded (plant study, P) and (ii) in the other, the incubation was continued without the plants (respiration study, R); all subsamples were incubated for an additional 215 days. Soils without amendments were used as controls. At the end of the incubation (510 days), their bacterial community profiles were characterised using ARISA and the molecular composition of soil organic matter (SOM) was investigated by pyrolysis-GC/MS.

Results

There were significant interactions between soil type, study type (P or R) and organic amendment. Organic amendments influenced overall SOM composition with microbial community response being mainly influenced by soil type but also strongly affected by the presence or absence of plants. For a specific soil type, ≥ 40 % of total variation in bacterial community ordination could be explained by the molecular composition of SOM.

Conclusions

The molecular composition of SOM is proposed as an important factor influencing the microbial response to organic amendments, including biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bastida F, Kandeler E, Moreno JL, Ros M, García C, Hernández T (2008) Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl Soil Ecol 40:318–329

    Article  Google Scholar 

  • Bending GD, Turner MK, Jones JE (2002) Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol Biochem 34:1073–1082

    Article  CAS  Google Scholar 

  • Buurman P, Van Bergen PF, Jongmans A, Meijer EL, Duran B, Van Lagen B (2005) Spatial and temporal variation in podzol organic matter studied by pyrolysis‐gas chromatography/ mass spectrometry and micromorphology. Eur J Soil Sci 56:253–270

    Article  CAS  Google Scholar 

  • Buurman P, Peterse F, Almendros Martin G (2007) Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena. Eur J Soil Sci 58:1330–1347

    Article  CAS  Google Scholar 

  • Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi, A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156

  • Carson JK, Campbell L, Rooney D, Clipson N, Gleeson DB (2009) Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol Ecol 67:381–388

    Article  CAS  PubMed  Google Scholar 

  • Chevalier T, Woignier T, Toucet J, Blanchart E (2010) Organic carbon stabilization in the fractal pore structure of Andosols. Geoderma 159:182–188

    Article  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10:171

    Article  PubMed Central  PubMed  Google Scholar 

  • Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility. A review. Agron Sustain Dev 30:401–422

    Article  CAS  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  CAS  PubMed  Google Scholar 

  • Elfstrand S, Båth B, Mårtensson A (2007) Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl Soil Ecol 36:70–82

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  CAS  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Gomez E, Ferreras L, Toresani S (2006) Soil bacterial functional diversity as influenced by organic amendment application. Bioresour Technol 97:1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Gomez JD, Denef K, Stewart CE, Zheng J, Cotrufo MF (2014) Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci 65:28–39

    Article  CAS  Google Scholar 

  • Goyal S, Chander K, Mundra MC, Kapoor KK (1999) Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biol Fertil Soils 29:196–200

    Article  CAS  Google Scholar 

  • Grossman J, O’Neill B, Tsai S, Liang B, Neves E, Lehmann J, Thies J (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60:192–205

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123:1–14

    Article  Google Scholar 

  • Havemann SA, Foster JS (2008) Comparative characterization of the microbial diversities of an artificial microbialite model and a natural stromatolite. Appl Environ Microbiol 74:7410–7421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley M (2013) Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209–210:188–197

    Article  Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley M, Van Hale R, Kaal J (2014a) Fate of biochar in chemically- and physically-defined soil organic carbon pools. Org Geochem 73:35–46

    Article  CAS  Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley MJ, Kirschbaum MUF, Wang T, van Hale R (2014b) Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter. GCB Bioenergy. doi:10.1111/gcbb.12183

    Google Scholar 

  • Jansen B, Nierop KGJ, Hageman JA, Cleef AM, Verstraten JM (2006) The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes. Org Geochem 37:1514–1536

    Article  CAS  Google Scholar 

  • Kaal J, Baldock JA, Buurman P, Nierop KGJ, Pontevedra-Pombal X, Martínez-Cortizas A (2007) Evaluating pyrolysis–GC/MS and 13C CPMAS NMR in conjunction with a molecular mixing model of the Penido Vello peat deposit, NW Spain. Org Geochem 38:1097–1111

    Article  CAS  Google Scholar 

  • Kaal J, Martinez Cortizas A, Eckmeier E, Costa Casais M, Santos Estevez M, Boado C (2008) Holocene fire history of black colluvial soils revealed by pyrolysis-GC/MS: a case study from Campo Lameiro (NW Spain). J Archaeol Sci 3:2133–2143

    Article  Google Scholar 

  • Kaal J, Martínez Cortizas A, Nierop KG (2009) Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon. J Anal Appl Pyrolysis 85:408–416

    Article  CAS  Google Scholar 

  • Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392

    Article  CAS  Google Scholar 

  • Kim J-S, Sparovek G, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem 39:684–690

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems - a review. Mitig Adapt Strateg Glob Chang 11:395–419

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota - a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lehmann J, Abiven S, Kleber M, Pan G, Singh BP, Sohi SP, Zimmerman AR (2015) Persistence of biochar in soil. Biochar for Environmental Management: Science, Technology and Implementation 233–280

  • Matsue N, Wada K (1985) A new equilibration method for cation-exchange capacity measurement. Soil Sci Soc Am J 49:574–578

    Article  CAS  Google Scholar 

  • Ng EL, Patti AF, Rose MT, Schefe CR, Wilkinson K, Smernik RJ, Cavagnaro TR (2014) Does the chemical nature of soil carbon drive the structure and functioning of soil microbial communities? Soil Biol Biochem 70:54–61

    Article  CAS  Google Scholar 

  • Nierop KGJ (1998) Origin of aliphatic compounds in a forest soil. Org Geochem 29:1009–1016

    Article  CAS  Google Scholar 

  • Nierop KGJ, Jansen B (2009) Extensive transformation of organic matter and excellent lipid preservation at the upper, superhumid Guandera páramo. Geoderma 151:357–369

    Article  CAS  Google Scholar 

  • Nierop KGJ, van Bergen PF, Buurman P, van Lagen B (2005) NaOH and Na4P2O7 extractable organic matter in two allophanic volcanic ash soils of the Azores Islands - a pyrolysis GC/MS study. Geoderma 127:36–51

    Article  CAS  Google Scholar 

  • Nishiyama M, Sumikawa Y, Guan G, Marumoto T (2001) Relationship between microbial biomass and extractable organic carbon content in volcanic and non-volcanic ash soil. Appl Soil Ecol 17:183–187

    Article  Google Scholar 

  • Parfitt RL (2009) Allophane and imogolite: role in soil biogeochemical processes. Clay Miner 44:135–155

    Article  CAS  Google Scholar 

  • Poirier N, Sohi SP, Gaunt JL, Mahieu N, Randall EW, Powlson DS, Evershed RP (2005) The chemical composition of measurable soil organic matter pools. Org Geochem 36:1174–1189

  • Prayogo C, Jones J, Baeyens J, Bending G (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702

    Article  CAS  Google Scholar 

  • Ramette A (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl Environ Microbiol 75:2495–2505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raven AM, Van Bergen PF, Stott AW, Dudd SN, Evershed RP (1997) Formation of long-chain ketones in archaeological pottery vessels by pyrolysis of acyl lipids. J Anal Appl Pyrol 40:267–285

    Article  Google Scholar 

  • Ros M, Klammer S, Knapp B, Aichberger K, Insam H (2006) Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag 22:209–218

    Article  Google Scholar 

  • Rutigliano FA, Romano M, Marzaioli R, Baglivo I, Baronti S, Miglietta F, Castaldi S (2014) Effect of biochar addition on soil microbial community in a wheat crop. Eur J Soil Biol 60:9–15

    Article  CAS  Google Scholar 

  • Schellekens J, Buurman P, Pontevedra-Pombal X (2009) Selecting parameters for the environmental interpretation of peat molecular chemistry - A pyrolysis-GC/MS study. Org Geochem 40:678–691

    Article  CAS  Google Scholar 

  • Schulten HR, Plage B, Schnitzer M (1991) A chemical structure for humic substances. Naturwissenschaften 78:311–312. doi:10.1007/BF0122 1416

    Article  CAS  Google Scholar 

  • Schulten H-R, Sorge-Lewin C, Schnitzer M (1997) Structure of unknown soil nitrogen investigated by analytical pyrolysis. Biol Fertil Soils 24:249–254

    Article  CAS  Google Scholar 

  • Schutter M, Dick R (2001) Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol Biochem 33:1481–1491

    Article  CAS  Google Scholar 

  • Stankiewicz BA, Briggs DE, Evershed RP (1997) Chemical composition of Paleozoic and Mesozoic fossil invertebrate cuticles as revealed by pyrolysis-gas chromatography/mass spectrometry. Energy Fuels 11:515–521

    Article  CAS  Google Scholar 

  • Stuczynski T, McCarty G, Reeves J, Wright R (1997) Use of pyrolysis GC/MS for assessing changes in soil organic matter quality. Soil Sci 162:97–105

    Article  CAS  Google Scholar 

  • Suárez-Abelenda M, Buurman P, Camps Arbestain M, Kaal J, Martinez-Cortizas A, Gartzia-Bengoetxea N, Macías F (2011) Comparing NaOH-extractable organic matter of acid forest soils that differ in their pedogenic trends: a pyrolysis-GC/MS study. Eur J Soil Sci 62:834–848

    Article  Google Scholar 

  • Suárez-Abelenda M, Kaal J, Camps-Arbestain M, Knicker H, Macías F (2014) Molecular characteristics of permanganate- and dichromate-oxidation-resistant soil organic matter from a black-C-rich colluvial soil. Soil Res 52:164–179

    Article  Google Scholar 

  • Suárez-Abelenda M, Ahmad R, Camps-Arbestain M, Herath HMSK (2015) Changes in the chemical composition of soil organic matter over time in the presence and absence of living roots: a pyrolysis GC/MS study. Plant Soil 391:161–177. doi:10.1007/s11104-015-2423-7

    Article  Google Scholar 

  • Tegelaar EW, De Leeuw JW, Sáiz-Jiménez C (1989) Possible origin of aliphatic moieties in humic substances. Sci Total Environ 81:1–17

    Article  Google Scholar 

  • Van Horn DJ, Van Horn ML, Barrett JE, Gooseff MN, Altrichter AE, Geyer KM, Zeglin LH, Takacs-Vesbach CD (2013) Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: role of geographic scale. PLoS One 8:e66103. doi:10.1371/journal.pone.0066103

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang T, Camps Arbestain M, Hedley M, Bishop P (2012) Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Org Geochem 51:45–54

    Article  CAS  Google Scholar 

  • Wardle DA, Giller KE (1996) The quest for a contemporary ecological dimension to soil biology. Soil Biol Biochem 28:1549–1554

    Article  CAS  Google Scholar 

  • Watzinger A, Feichtmair S, Kitzler B, Zehetner F, Kloss S, Wimmer B, Zechmeister-Boltenstern S, Soja G (2014) Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment. Eur J Soil Sci 65:40–51

    Article  CAS  Google Scholar 

  • Zhou J, Xia B, Huang H, Treves DS, Hauser LJ, Mural RJ, Palumbo AV, Tiedje JM (2003) Bacterial phylogenetic diversity and a novel candidate division of two humid region, sandy surface soils. Soil Biol Biochem 35:915–924

  • Zhou J, Xia B, Treves DS, Wu L-Y, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical assistance of Ms. Jinping Du and Ms. Natile Burr (IMBS Massey University). The authors also acknowledge Professor Bernd H. A. Rehm (IMBS Massey University) for providing lab space, Dr Joeri Kaal for technical support and advice in pyrolysis-GC/MS, and Esther Meenken from Plant and Food Research and Prof. Antonio Martinez Cortizas from the University of Santiago de Compostela (Spain) for their advice in the statistical analysis. Congying Wang was funded by the National Natural Foundation of China. Financial support for the research was covered by the Ministry of Agriculture and Forestry, New Zealand. Last but not least, we are grateful to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Camps-Arbestain.

Additional information

Responsible Editor: Johannes Lehmann

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Anderson, C., Suárez-Abelenda, M. et al. The chemical composition of native organic matter influences the response of bacterial community to input of biochar and fresh plant material. Plant Soil 395, 87–104 (2015). https://doi.org/10.1007/s11104-015-2621-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2621-3

Keywords

Navigation