Skip to main content

Advertisement

Log in

Response of the population size and community structure of Paenibacillus spp. to different fertilization regimes in a long-term experiment of red soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Paenibacillus spp. are widely considered to impact the fertility and health of soil. The aim of this study was to evaluate how different fertilization regimes affect the population size and community structure of Paenibacillus spp. over a long period of time in red soil.

Methods

Soil samples were collected from a long-term experiment and were then analyzed using real-time PCR and PCR-DGGE. The correlation analysis, PCA and RDA were used to explore the relationships among Paenibacillus spp. population, community structure and soil properties in different treatments.

Results

The pH was seriously decreased only by the application of chemical fertilizer. The largest population of Paenibacillus spp. was found in the soil treated with organic fertilizer application, while the richest diversity was observed in the soil treated only with the chemical fertilizer. The Paenibacillus spp., Paenibacillus alkaliterrae, Paenibacillus campinasensis, and Paenibacillus xylanilyticus were found in all treatments. Paenibacillus castaneae was found in the soil treated with NPK, and Paenibacillus pabuli was specifically observed in the lime-amended treatment. Paenibacillus taichungensis and Paenibacillus prosopidis were detected in the soil treated with only chemical fertilizer. Except for the ammonium and pH, all the tested soil fertility parameters (total C, total N, nitrate, available K and available P) could significantly affect both the Paenibacillus spp. population number and diversity. The soil pH was significantly correlated with Paenibacillus spp. diversity only.

Conclusions

Our results indicate that the different long-term fertilization regimes have varied impact on both the Paenibacillus spp. population size and the diversity of the community associated with the soil properties tested. These results can help to enrich the information on the response of beneficial soil microbes to different long-term fertilization regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ai C, Liang G, Sun J, Wang X, Zhou W (2012) Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 173–174:330–338

    Article  Google Scholar 

  • Anand R, Chanway CP (2013) nif gene sequence and arrangement in the endophytic diazotroph Paenibacillus polymyxa strain P2b-2R. Biol Fertil Soils 49:965–970

    Article  CAS  Google Scholar 

  • Anand R, Grayston S, Chanway C (2013) N-2-Fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microb Ecol 66:369–374

    Article  PubMed  CAS  Google Scholar 

  • Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Blagodatskaya EV, Anderson T-H (1998) Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biol Biochem 30:1269–1274

    Article  CAS  Google Scholar 

  • Chen H-B, Kao P-M, Huang H-C, Shieh C-J, Chen C-I, Liu Y-C (2010) Effects of using various bioreactors on chitinolytic enzymes production by Paenibacillus taichungensis. Biochem Eng J 49:337–342

    Article  Google Scholar 

  • Coelho MR, Da Mota FF, Carneiro NP, Marriel IE, Paiva E, Rosado AS, Seldin L (2007) Diversity of Paenibacillus spp. in the rhizosphere of four sorghum (Sorghum bicolor) cultivars sown with two contrasting levels of nitrogen fertilizer assessed by rpoB-based PCR-DGGE and sequencing analysis. J Microbiol Biotechnol 17:753–760

    PubMed  CAS  Google Scholar 

  • Coelho MR, Carneiro NP, Marriel IE, Seldin L (2009) Molecular detection of nifH gene-containing Paenibacillus in the rhizosphere of sorghum (Sorghum bicolor) sown in Cerrado soil. Lett Appl Microbiol 48:611–617

    Article  PubMed  CAS  Google Scholar 

  • da Mota FF, Gomes EA, Paiva E, Rosado AS, Seldin L (2004) Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett Appl Microbiol 39:34–40

    Article  PubMed  Google Scholar 

  • da Mota FF, Gomes EA, Paiva E, Seldin L (2005) Assessment of the diversity of Paenibacillus species in environmental samples by a novel rpoB-based PCR-DGGE method. FEMS Microbiol Ecol 53:317–328

    Article  PubMed  Google Scholar 

  • da Silva KR, Salles JF, Seldin L, van Elsas JD (2003) Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J Microbiol Methods 54:213–231

    Article  PubMed  Google Scholar 

  • Finnegan PM, Brumbley SM, O’Shea MG, Nevalainen KM, Bergquist PL (2004) Paenibacillus isolates possess diverse dextran-degrading enzymes. J Appl Microbiol 97:477–485

    Article  PubMed  CAS  Google Scholar 

  • Guo T, Liao MD (2014) Suppression of Rhizoctonia solani and induction of host plant resistance by Paenibacillus kribbensis PS04 towards controlling of rice sheath blight. Biocontrol Sci Technol 24:116–121

    Article  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KW, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  PubMed  CAS  Google Scholar 

  • He J-Z, Zheng Y, Chen C-R, He Y-Q, Zhang L-M (2008) Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J Soils Sediments 8:349–358

    Article  CAS  Google Scholar 

  • Jemli S, Ben Messaoud E, Ben Mabrouk S, Bejar S (2008) The cyclodextrin glycosyltransferase of Paenibacillus pabuli US132 strain: molecular characterization and overproduction of the recombinant enzyme. J Biomed Biotechnol 2008:692573

    Article  PubMed  PubMed Central  Google Scholar 

  • Juarez-Jimenez B, Rodelas B, Martinez-Toledo MV, Gonzalez-Lopez J, Crognale S, Gallo AM, Pesciaroli C, Fenice M (2008) Production of chitinolytic enzymes by a strain (BM17) of Paenibacillus pabuli isolated from crab shells samples collected in the east sector of central Tyrrhenian Sea. Int J Biol Macromol 43:27–31

    Article  PubMed  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee FL, Tien CJ, Tai CJ, Wang LT, Liu YC, Chern LL (2008) Paenibacillus taichungensis sp. nov., from soil in Taiwan. Int J Syst Evol Microbiol 58:2640–2645

    Article  PubMed  CAS  Google Scholar 

  • Ling N, Huang Q, Guo S, Shen Q (2011) Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum. Plant Soil 341:485–493

    Article  CAS  Google Scholar 

  • Ling N, Deng K, Song Y, Wu Y, Zhao J, Raza W, Huang Q, Shen Q (2013) Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiol Res. doi:10.1016/j.micres.2013.10.004

    PubMed  Google Scholar 

  • McSpadden Gardener BB (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252–1258

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakhro N, Dkhar MS (2010) Impact of organic and inorganic fertilizers on microbial populations and biomass carbon in paddy field soil. J Agron 9:102–110

    Article  Google Scholar 

  • Park DJ, Lee YS, Choi YL (2013) Characterization of a cold-active beta-glucosidase from Paenibacillus xylanilyticus KJ-03 capable of hydrolyzing isoflavones daidzin and genistin. Protein J 32:579–584

    Article  PubMed  CAS  Google Scholar 

  • Ranieri ML, Ivy RA, Mitchell WR, Call E, Masiello SN, Wiedmann M, Boor KJ (2012) Real-time PCR detection of Paenibacillus spp. in raw milk to predict shelf life performance of pasteurized fluid milk products. Appl Environ Microbiol 78:5855–5863

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rivas R, Mateos PF, Martinez-Molina E, Velazquez E (2005) Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55:405–408

    Article  PubMed  CAS  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47:289–298

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Peix A, Rivas R, Velazquez E, Salazar S, Santa-Regina I, Rodriguez-Barrueco C, Igual JM (2008) Paenibacillus castaneae sp. nov., isolated from the phyllosphere of Castanea sativa Miller. Int J Syst Evol Microbiol 58:2560–2564

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Fterich A, Mahdhi M, Ramirez-Bahena MH, Caviedes MA, Mars M, Velazquez E, Rodriguez-Llorente ID (2010) Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta. Int J Syst Evol Microbiol 60:2182–2186

    Article  PubMed  CAS  Google Scholar 

  • Ying J-Y, Zhang L-M, He J-Z (2010) Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns. Environ Microbiol Rep 2:304–312

    Article  PubMed  CAS  Google Scholar 

  • Yoon JH, Kang SJ, Yeo SH, Oh TK (2005) Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 55:2339–2344

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Nicolaisen M, Larsen J, Ravnskov S (2013) Organic fertilization alters the community composition of root associated fungi in Pisum sativum. Soil Biol Biochem 58:36–41

    Article  CAS  Google Scholar 

  • Zhang H, Wang B, Xu M (2008) Effects of inorganic fertilizer inputs on grain yields and soil properties in a long-term wheat-corn cropping system in south China. Commun Soil Sci Plan 39:1583–1599

    Article  CAS  Google Scholar 

  • Zhang W, Xu M, Wang B, Wang X (2009) Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China. Nutr Cycl Agroecosyst 84:59–69

    Article  CAS  Google Scholar 

  • Zhang Q, Tian M, Tang L, Li H, Li W, Zhang J, Zhang H, Mao Z (2013) Exploration of the key microbes involved in the cellulolytic activity of a microbial consortium by serial dilution. Bioresour Technol 132:395–400

    Article  PubMed  CAS  Google Scholar 

  • Zhong WH, Cai ZC (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl Soil Ecol 36:84–91

    Article  Google Scholar 

  • Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, Shen W (2010) The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326:511–522

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (2013CB127403), by the Fundamental Research Funds for the Central Universities (KYZ201307), by Agricultural Ministry of China (201103004) and by Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirong Shen.

Additional information

Responsible Editor: Jesus Mercado-Blanco.

Ning Ling and Dongsheng Wang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, N., Wang, D., Zhu, C. et al. Response of the population size and community structure of Paenibacillus spp. to different fertilization regimes in a long-term experiment of red soil. Plant Soil 383, 87–98 (2014). https://doi.org/10.1007/s11104-014-2146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2146-1

Keywords

Navigation