Skip to main content
Log in

Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Root functional traits are determinants of soil carbon storage; plant productivity; and ecosystem properties. However, few studies look at both annual and perennial roots, soil properties, and productivity in the context of field scale agricultural systems.

Methods

In Long Term and Conversion studies in North Central Kansas, USA; root biomass and length, soil carbon and nitrogen, microbial biomass, nematode and micro-arthropod communities were measured to a depth of one meter in paired perennial grassland and cropland wheat sites as well as a grassland site that had been converted to cropland using no tillage five years prior.

Results

In the Long Term Study root biomass was three to seven times greater (9.4 Mg ha−1 and 2.5 Mg ha−1 in May), and root length two times greater (52.5 km m2 and 24.0 km m−2 in May) in perennial grassland than in cropland. Soil organic carbon and microbial biomass carbon were larger, numbers of Orbatid mites greater (2084 vs 730 mites m−2), and nematode communities more structured (Structure Index 67 vs 59) in perennial grassland versus annual cropland. Improved soil physical and biological properties in perennial grasslands were significantly correlated with larger, deeper root systems. In the Conversion Study root length and biomass, microbial biomass carbon, mite abundance and nematode community structure differed at some but not all dates and depths. Isotope analysis showed that five years after no-till conversion old perennial roots remained in soils of annual wheat fields and that all soil fractions except coarse particulate organic matter were derived from C4 plants.

Conclusions

Significant correlation between larger, longer roots in grasslands compared to annual croplands and improved soil biological, physical and chemical properties suggest that perennial roots are an important factor allowing perennial grasslands to maintain productivity and soil quality with few inputs. Perennial roots may persist and continue to influence soil properties long after conversion to annual systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MBC:

Microbial Biomass

SOC:

Soil Organic Carbon

POM:

Particulate Organic Matter

BI:

Basal Index

SI:

Structure Index

EI:

Enrichment Index

NMS:

Non-metric Multidimensional Scaling

References

  • Balesdent J, Balabane M (1996) Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol Biochem 28:1261–1263. doi:10.1016/0038-0717(96)00112-5

    Article  CAS  Google Scholar 

  • Barker KR (1985) Nematode extraction and bioassays. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on meloidogyne, methodology, vol 2. North Carolina State University Graphics, Raleigh, NC

  • Beniston JW, DuPont ST, Glover JD, Lal R, Dungait JAJ (2014) Soil organic carbon dynamics 75 years after land-use change in perennial grassland and annual wheat agricultural systems. Biogeochemistry: 1–13. doi: 10.1007/s10533-014-9980-3

  • Bongers T (1990) The maturity index - An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Article  Google Scholar 

  • Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251

    Article  Google Scholar 

  • Boody G, Vondracek B, Andow DA, Krinke M, Westra J, Zimmerman J, Welle P (2005) Multifunctional agriculture in the United States. Bioscience 55:27–38. doi:10.1641/0006-3568

    Article  Google Scholar 

  • Busso CA, Briske DD, Olalde-Portugal V (2001) Root traits associated with nutrient exploitation following defoliation in three coexisting perennial grasses in a semi-arid savanna. Oikos 93:332–342. doi:10.1034/j.1600-0706.2001.930216.x

    Article  Google Scholar 

  • Buyanovsky GA, Kucera CL, Wagner GH (1987) Comparative analyses of carbon dynamics in native and cultivated ecosystems. Ecology 68:2023–2031

    Article  Google Scholar 

  • Cambardella CA, Elliott ET (1992) Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783

    Article  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  • Carter MR, Gregorich EG (2010) Carbon and nitrogen storage by deep-rooted tall fescue (Lolium arundinaceum) in the surface and subsurface soil of a fine sandy loam in eastern Canada. Agric Ecosyst Environ 136:125–132. doi:10.1016/j.agee.2009.12.005

    Article  CAS  Google Scholar 

  • Coupland RT, Johnson RE, Coupland RT, Johnson RE (1965) Rooting characteristics of native grassland species in Saskatchewan. J Ecol 53:475. doi:10.2307/2257990

    Article  Google Scholar 

  • Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct Ecol 16:563–574. doi:10.1046/j.1365-2435.2002.00660.x

    Article  Google Scholar 

  • Craine JM, Wedin DA, Chapin FS, Reich PB (2003) Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecol 165:85–100

    Article  Google Scholar 

  • Culman SW, DuPont ST, Glover JD, Buckley DH, Fick GW, Ferris H, Crews TE (2010) Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agric Ecosyst Environ 137:13–24. doi:10.1016/j.agee.2009.11.008

  • Czarnes S, Hallett PD, Bengough AG, Young IM (2000) Root- and microbial-derived mucilages affect soil structure and water transport. Eur J Soil Sci 51:435–443. doi:10.1046/j.1365-2389.2000.00327.x

    Article  Google Scholar 

  • Dell CJ, Rice CW (2005) Short-term competition for ammonium and nitrate in tallgrass prairie. Soil Sci Soc Am J 69:371–377

    Article  CAS  Google Scholar 

  • DuPont ST, Culman SW, Ferris H, Buckley DH, Glover JD (2010) No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agric Ecosyst Environ 137:25–32. doi:10.1016/j.agee.2009.12.021

    Article  CAS  Google Scholar 

  • Eleki K, Cruse RM, Albrecht KA (2005) Root segregation of C3 and C4 species using carbon isotope composition. Crop Sci 45:879–882. doi:10.2135/cropsci2004.0170

    Article  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837. doi:10.1890/0012-9658(2003)084[0827:hrctfo]2.0.co;2

    Article  Google Scholar 

  • Ferris H, Matute MM (2003) Structural and functional succession in the nematode fauna of a soil food web. Appl Soil Ecol 23:93–110

    Article  Google Scholar 

  • Ferris H, Bongers T, de Goede RGM (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29

    Article  Google Scholar 

  • Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322

    Article  CAS  Google Scholar 

  • Fornara DA, Tilman D, Hobbie SE (2009) Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. J Ecol 97:48–56. doi:10.1111/j.1365-2745.2008.01453.x

    Article  CAS  Google Scholar 

  • Frank DA (2007) Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Oecologia 152:131–139. doi:10.1007/s00442-006-0632-8

    Article  PubMed  Google Scholar 

  • Frank AB, Liebig MA, Tanaka DL (2006) Management effects on soil CO2 efflux in northern semiarid grassland and cropland. Soil Tillage Res 89:78–85

    Article  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31. doi:10.1046/j.1469-8137.2000.00681.x

    Article  Google Scholar 

  • Gill R, Burke IC, Milchunas DG, Lauenroth WK (1999) Relationship between root biomass and soil organic matter pools in the shortgrass steppe of eastern Colorado. Ecosystems 2:226–236

    Article  Google Scholar 

  • Glover JD, Cox CM, Reganold JP (2007) Future farming: a return to roots? Sci Am 83–89

  • Glover JD, Culman SW, DuPont ST, Broussard W, Young L, Mangan ME, Mai JG, Crews TE, DeHaan LR, Buckley DH, Ferris H, Turner RE, Reynolds HL, Wyse DL (2010) Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agric Ecosyst Environ 137:3–12. doi:10.1016/j.agee.2009.11.001

    Article  Google Scholar 

  • Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12

    Article  Google Scholar 

  • Gregory PJ, McGowan M, Biscoe PV, Hunter B (1978) Water relations of winter wheat. Growth of the root system. J Agric Sci 91:91

    Article  Google Scholar 

  • Hayes DC, Seastedt TR (1987) Root dynamics of tallgrass prairie in wet and dry years. Canadian J Bot-Rev Can De Bot 65:787–791

    Article  Google Scholar 

  • Haynes RJ, Beare MH (1997) Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biol Biochem 29:1647–1653. doi:10.1016/s0038-0717(97)00078-3

    Article  CAS  Google Scholar 

  • Ilieva-Makulec K, Olejniczak I, Szanser M (2006) Response of soil micro- and mesofauna to diversity and quality of plant litter. Elsevier, Elsevier France-Editions Scientifiques Medicales

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  • Jordan N, Boody G, Broussard W, Glover JD, Keeney D, McCown BH, McIsaac G, Muller M, Murray H, Neal J, Pansing C, Turner RE, Warner K, Wyse D (2007) Environment - sustainable development of the agricultural bio-economy. Science 316:1570–1571. doi:10.1126/science.1141700

    Article  CAS  PubMed  Google Scholar 

  • Kitchen DJ, Blair JM, Callaham MA (2009) Annual fire and mowing alter biomass, depth distribution, and C and N content of roots and soil in tallgrass prairie. Plant Soil 323:235–247. doi:10.1007/s11104-009-9931-2

    Article  CAS  Google Scholar 

  • Lal R, Kimble J, Follett R, Cole C (1999) The potential of U.S. Cropland to sequester carbon and mitigate the greenhouse effect. Carbon and mitigating the greenhouse effect. CRC Press, Boca Raton

    Google Scholar 

  • Lenz R, Eisenbeis G (2000) Short-term effects of different tillage in a sustainable farming system on nematode community structure. Biol Fertil Soils 31:237–244

    Article  Google Scholar 

  • Majdi H (2005) Fine root turnover in forest ecosystems preface. Plant Soil 276:vii–viii. doi:10.1007/s11104-005-2582-z

    Article  CAS  Google Scholar 

  • Manske GGB, Ortiz-Monasterio JI, Van Ginkel M, Gonzalez RM, Rajaram S (2000) Traits associated with improved P-uptake efficiency in CIMMYT’s semidwarf spring bread wheat grown on an acid Andisol in Mexico. Plant Soil 221:189–204. doi:10.1023/A:1004727201568

    Article  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445. doi:10.1016/s0038-0717(01)00052-9

    Article  CAS  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR

    Google Scholar 

  • Molina JAE, Clapp CE, Linden D, Allmaras RR, Layese MF (2001) Modeling the incorporation of corn (Zea mays L.) carbon from roots and rhizodeposition into soil organic matter. Soil Biol Biochem 33:83–92. doi:10.1016/S0038-0717(00)00117-6

    Article  CAS  Google Scholar 

  • Monti A, Zatta A (2009) Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric Ecosyst Environ 132:252–259. doi:10.1016/j.agee.2009.04.007

    Article  Google Scholar 

  • Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147. doi:10.2307/1940664

    Article  Google Scholar 

  • Nepstad DC, Decarvalho CR, Davidson EA, Jipp PH, Lefebvre PA (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature (London) 372:666–669. doi:10.1038/372666a0

    Article  CAS  Google Scholar 

  • Nippert JB, Wieme RA, Ocheltree TW, Craine JM (2012) Root characteristics of C4 grasses limit reliance on deep soil water in tallgrass prairie. Plant Soil 355:385–394. doi:10.1007/s11104-011-1112-4

    Article  CAS  Google Scholar 

  • O’Donnell AG, Seasman M, Macrae A, Waite I, Davies JT (2001a) Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant Soil 232:135–145

    Article  Google Scholar 

  • O’Donnell AG, Seasman M, Macrae A, Waite I, Davies JT (2001b) Plants and fertilizers as drivers of change in microbial community structure and function in soils. Plant Soil 232:135–145. doi:10.1023/a:1010394221729

    Article  Google Scholar 

  • Partel M, Wilson SD (2002) Root dynamics and spatial pattern in prairie and forest. Ecology 83:1199–1203. doi:10.2307/3071934

    Article  Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750

    Article  Google Scholar 

  • Puget P, Drinkwater LE (2001) Short-term dynamics of root- and shoot-derived carbon from a leguminous green manure. Soil Sci Soc Am J 65:771–779. doi:10.2136/sssaj2001.653771x

    Article  CAS  Google Scholar 

  • Randall GW, Mulla DJ (2001) Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. J Environ Qual 30:337–344

    Article  CAS  PubMed  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Rice CW, Todd TC, Blair JM, Seastedt TR, Ramundo RA, Wilson GWT (1998) Belowground biology and processes. In: Knapp AK, Briggs JM, Harnett DC, Collins SL (eds) Grassland dynamics: long-term ecological research in tallgrass prairie. Oxford Press, Oxford

    Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156. doi:10.1007/s11104-011-0950-4

    Article  CAS  Google Scholar 

  • Schweinsberg-Mickan MSZ, Jorgensen RG, Muller T (2012) Rhizodeposition: Its contribution to microbial growth and carbon and nitrogen turnover within the rhizosphere. J Plant Nutr Soil Sci 175:750–760. doi:10.1002/jpln.201100300

    Article  Google Scholar 

  • Service KSUAESaCE (ed) (1996) Kansas Crop Planting Guide.

  • Service KSUAESaCE (1997) Wheat Production Handbook.

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Google Scholar 

  • Singh JS, Coleman DC (1974) Distribution of photo-assimilated C-14 in root systems of a shortgrass prairie. J Ecol 62:359–365

    Article  CAS  Google Scholar 

  • Smucker AJM, McBurney SL, Srivastava AK (1982) Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system.

  • Sollins P, Glassman C, Paul EA, Swanston C, Lajtha K, Heil W, Elliot ET (1999) Soil carbon and nitrogen: pools and fractions. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, NY

    Google Scholar 

  • Stewart AM, Frank DA (2008) Short sampling intervals reveal very rapid root turnover in a temperate grassland. Oecologia 157:453–458. doi:10.1007/s00442-008-1088-9

    Article  PubMed  Google Scholar 

  • Swemmer AM, Knapp AK, Smith MD (2006) Growth responses of two dominant C4 grass species to altered water availability. Int J Plant Sci 167:1001–1010

    Article  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720. doi:10.1038/379718a0

    Article  CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600

    Article  CAS  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Voroney RP, Winter JP, Beyaert RP (1993) Soil microbial biomass C and N. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton

    Google Scholar 

  • Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett 9:1127–1135

    Article  PubMed  Google Scholar 

  • Wardle DA (1992) A comparative-assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev Camb Philos Soc 67:321–358

    Article  Google Scholar 

  • Wardle DA, Yeates GW, Watson RN, Nicholson KS (1995) The detritus food-web and the diversity of soil fauna as indicators of disturbance regimes in agroecosystems. Plant Soil 170:35–43

    Article  CAS  Google Scholar 

  • Wardle DA, Williamson WM, Yeates GW, Bonner KI (2005) Trickle-down effects of aboveground trophic cascades on the soil food web. Oikos 111:348–358

    Article  Google Scholar 

  • Weaver JE (1947) Rate of decomposition of roots and rhizomes of certain range grasses in undisturbed prairie soil. Ecol (Durham) 28:221–240. doi:10.2307/1930511

    Article  Google Scholar 

  • Weaver JE (1958a) Classification of root systems of forbs of grassland and a consideration of their significance. Ecol (Durham) 39:393–401. doi:10.2307/1931749

    Article  Google Scholar 

  • Weaver JE (1958b) Summary and interpretation of underground development in natural grassland communitites. Ecol Monogr 28:56–78

    Article  Google Scholar 

  • Weaver J, Zink E (1946a) Length of life of roots of ten species of perennial range and pasture grasses. Plant Physiol (Bethesda) 21:201–217. doi:10.1104/pp. 21.2.201

    Article  CAS  Google Scholar 

  • Weaver JE, Zink E (1946b) Annual increase of underground materials in 3 range grasses. Ecol (Durham) 27:115–127. doi:10.2307/1932506

    Article  Google Scholar 

  • Whalley WR, Riseley B, Leeds-Harrison PB, Bird NRA, Leech PK, Adderley WP (2005) Structural differences between bulk and rhizosphere soil. Eur J Soil Sci 56:353–360. doi:10.1111/j.1365-2389.2004.00670.x

    Article  Google Scholar 

  • Yeates GW, Bongers T, Degoede RGM, Freckman DW, Georgieva SS (1993) Feeding-habits in soil nematode families and genera - an outline for soil ecologists. J Nematol 25:315–331

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank John Mai for extensive technical support on this project and Dr. Tim Todd, Kansas State University for graciously granted use of laboratory space. Thanks to Christine Sprunger for review and useful suggestions for this paper. This research was supported in part by the Land Institute Fellowship program and grant number GW07-012 from Sustainable Agriculture Research and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. DuPont.

Additional information

Responsible Editor: Tim Simon George.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 32 kb)

Supplementary Table 2

(DOCX 32 kb)

Supplementary Table 3

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DuPont, S.T., Beniston, J., Glover, J.D. et al. Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat. Plant Soil 381, 405–420 (2014). https://doi.org/10.1007/s11104-014-2145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2145-2

Keywords

Navigation