Skip to main content

Advertisement

Log in

Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

An Erratum to this article was published on 23 February 2014

Abstract

Background and aims

Many plant growth-promoting endophytes (PGPE) possessing 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity can reduce the level of stress ethylene and assist their host plants cope with various biotic and abiotic stresses. However, information about the endophytic bacteria colonizing in the coastal halophytes is still very scarce. This study aims at isolating efficient ACC deaminase-producing plant growth-promoting (PGP) bacterial strains from the inner tissues of a traditional Chinese folk medicine Limonium sinense (Girard) Kuntze, a halophyte which has high economic and medicinal values grown in the coastal saline soils. Their PGP activity and effects on host seed germination and seedling growth under salinity stress were also evaluated.

Methods

A total of 126 isolates were obtained from the surface sterilized roots, stems and leaves of L. sinense (Girard) Kuntze. They were initially selected for their ability to produce ACC deaminase as well as other PGP properties such as production of indole-3-acetic acid (IAA), N2-fixation, and phosphate-solubilizing activities and subsequently identified by the 16S rRNA gene sequencing. For selected strains, seed germination, seedling growth, and flavonoids production in axenically growth L. sinense (Girard) Kuntze seedlings at different NaCl concentrations (0–500 mM) were quantified.

Results

Thirteen isolates possessing ACC deaminase activity were obtained. The 16S rRNA gene sequencing analysis showed them to belong to eight genera: Bacillus, Pseudomonas, Klebsiella, Serratia, Arthrobacter, Streptomyces, Isoptericola, and Microbacterium. Inoculation with four of the selected ACC deaminase-producing strains not only stimulated the growth of the host plant but also influenced the flavonoids accumulation. All four strains could colonize and can be re-isolated from the host plant interior tissues.

Conclusions

These results demonstrate that ACC deaminase-producing habitat-adapted symbiotic bacteria isolated from halophyte could enhance plant growth under saline stress conditions and the PGPE strains could be appropriate as bioinoculants to enhance soil fertility and protect the plants against salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57(7):578–589

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of Photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bacilio M, Rodriguez H, Moreno M, Hernandez JP, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 40:188–193

    CAS  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Guo SL, Wang ZL, Zhao JQ, Zhao YX, Zhang H (2007) Expressed sequence tags from the halophyte Limonium sinense. DNA Seq 8(1):61–67

    Article  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Johri BN (2008) Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  PubMed  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Döbereiner HG, Evans E, Seifert U, Wortis M (1995) Spinodal fluctuations of budding vesicles. Phys Rev Lett 75:3360–3363

    Article  PubMed  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Nasser AH, Hardy GESJ, Sivaithamparam K (2008) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J App Microbiol 106:13–26

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789

    Article  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Grönemeyer JL, Burbano CS, Hurek T, Reinhold-Hurek B (2012) Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil 356:67–82

    Article  Google Scholar 

  • Hol WH, Bezemer TM, Biere A (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci 4:81. doi:10.3389/fpls.2013.00081

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu YC, Schmidhalter UM (2005) Drought and salinity: a comparison of their effects on the mineral nutrition of plants. J Plant Nut Soil Sci 168:541–549

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Karthikeyan B, Joe MM, Islam MR, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Peberdy JF, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsia J BioSci 4:23–32

    Article  Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ (2011a) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49(8):852–861

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ (2011b) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao GZ, Varma A, Qin S, Xiong Z, Huang HY, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ (2012) An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS One 7(12):e51410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin LC, Chou CJ (2000) Flavonoids and phenolics from Limonium sinense. Planta Med 66:382–383

    Article  CAS  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilensis NH and extracts of the marine alga Ulva lactuca. J Plant Growth Reg 29(1):6–22

    Article  CAS  Google Scholar 

  • Noori MSS, Saud HM (2012) Potential plant growth-promoting activity of Pseudomonas sp. isolated from paddy soil in Malaysia as biocontrol agent. J Plant Pathol Microb 3:120

    CAS  Google Scholar 

  • Ortet P, Barakat M, Lalaouna D, Fochesato S, Barbe V, Vacherie B, Santaella C, Heulin T, Achouak W (2011) Complete genome sequence of a beneficial plant root-associated bacterium, Pseudomonas brassicacearum. J Bacteriol 193(12):3146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ozawa T, Wu J, Fujii S (2007) Effect of inoculation with a strain of Pseudomonas pseudoalcaligenes isolated from the endorhizosphere of Salicornia europea on salt tolerance of the glasswort. Soil Sci Plant Nutr 53:12–16

    Article  CAS  Google Scholar 

  • Pandino G, Courts FL, Lombardo S, Mauromicale G, Williamson G (2010) Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. J Agric Food Chem 58:1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Patel D, Jha CK, Tank N, Saraf M (2012) Growth enhancement of Chickpea in saline soils using plant growth-promoting rhizobacteria. J Plant Growth Regul 31:53–62

    Article  CAS  Google Scholar 

  • Pattern CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin S, Xing K, Fei SM, Lin Q, Chen XM, Cao CL, Sun Y, Wang Y, Li WJ, Jiang JH (2011a) Pseudonocardia sichuanensis sp. nov., a novel endophytic actinomycete isolated from the root of Jatropha curcas L. Antonie Van Leeuwenhoek 99(2):395–401

    Article  PubMed  Google Scholar 

  • Qin S, Xing K, Jiang JH, Xu LH, Li WJ (2011b) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89(3):457–473

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Chen HH, Zhao GZ, Li J, Zhu WY, Xu LH, Jiang JH, Li WJ (2012) Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep 4(5):522–531

    Article  PubMed  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2(1):6. doi:10.1186/2193-1801-2-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Redman RS, Kim YO, Woodward CJ, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6(7):e14823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102(3):463–472

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85(2):371–381

    Article  CAS  PubMed  Google Scholar 

  • Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J Microbiol Biotechnol 17(8):1300–1307

    CAS  PubMed  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated endophytic fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Wj Y, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing ACC deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296(1):131–136

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  Google Scholar 

  • Tang XH, Yan LF, Gao J, Yang XL, Xu YX, Ge HY, Yang HD (2012) Antitumor and immunomodulatory activity of polysaccharides from the root of Limonium sinense Kuntze. Int J Biol Macromol 51(5):1134–1139

    Article  CAS  PubMed  Google Scholar 

  • Tavares L, Carrilho D, Tyagi M, Barata D, Serra AT, Duarte CMM, Duarte RO, Feliciano RP, Bronze MR, Chicau P, Espirito-Santo MD, Ferreira RB, dos Santos CN (2010) Antioxidant capacity of Macaronesian traditional medicinal plants. Molecules 15:2576–2592

    Article  CAS  PubMed  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effect of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (no.31000005, 31370062), the Program of Natural Science Foundation of the Jiangsu Higher Education Institutions of China (11KJD210002), the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the opening project of the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (No.SKLMR-20130601). We are grateful to the anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Qin or Ji-Hong Jiang.

Additional information

Responsible Editor: Katharina Pawlowski.

Sheng Qin and Yue-Ji Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Original morphological characteristics (left) and re-isolation of strains (right) from inoculated L. sinense seedlings. a Re-isolation of strain KLBMP 4941, b re-isolation of strain KLBMP 4942, c re-isolation of strain KLBMP 5084, d re-isolation of strain KLBMP 5180 (DOC 6450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, S., Zhang, YJ., Yuan, B. et al. Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374, 753–766 (2014). https://doi.org/10.1007/s11104-013-1918-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1918-3

Keywords

Navigation