Skip to main content

Advertisement

Log in

Organic matter properties in soils afforested with Pinus radiata

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Afforestation causes important alterations in SOM content and composition that affect the soil functions and C balance. The aim of this study was to identify the mechanisms that determine the changes in SOM composition following afforestation of grasslands.

Methods

The study included 4 chronosequences and 5 paired plots comprising pastures and land afforested with Pinus radiata. The SOM was characterized by 13C CP-MAS NMR spectroscopy and differential scanning calorimetry.

Results

During the first 10–20 year after afforestation, the changes in SOM content varied from slight gains to large losses (>40 %). The analyses revealed that even SOM compounds considered resistant to decomposition were degraded during this time. The SOM gains, observed 20 year after stand establishment, were favoured by the higher recalcitrance of pine litter and possibly by soil acidification. The concentrations of most SOM compounds, particularly the stable compounds, were higher at the end of the rotation. The low degree of protection, along with the favourable climatic conditions, may also explain the rapid decomposition of SOM, including resistant compounds, in these soils. DSC analysis complemented the information about SOM composition provided by other techniques.

Conclusions

The accumulation of stable SOM compounds at the end of the rotation suggests a longer soil C turnover in these afforested soils, which may alleviate the gradual loss of SOC in intensively managed forest soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almendros G, Dorado J, González-Villa FJ, Blanco MJ, Lankes U (2000) C-13 NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biol Biochem 32:793–804. doi:10.1016/S0038-0717(99)00202-3

    Article  CAS  Google Scholar 

  • Barros N, Salgado J, Villanueva M, Rodriquez-Añón J, Proupin J, Feijóo S, Martín-Pastor M (2011) Application of DSC–TG and NMR to study the soil organic matter. J Therm Anal Calorim 104:53–60. doi:10.1007/s10973-010-1163-4

    Article  CAS  Google Scholar 

  • Berthrong ST, Jobbagy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–2241. doi:10.1890/08-1730.1

    Article  PubMed  Google Scholar 

  • Cerli C, Celi L, Kaiser K, Guggenberger G, Johansson MB, Cignetti A, Zanini E (2008) Changes in humic substances along an age sequence of Norway spruce stands planted on former agricultural land. Org Geochem 39:1269–1280. doi:10.1016/j.orggeochem.2008.06.001

    Article  CAS  Google Scholar 

  • de Leeuw JW, Versteegh GJM, van Bergen PF (2006) Biomacromolecules of algae and plants and their fossil analogues. Plant Ecol 182:209–233. doi:10.1007/978-1-4020-4443-4_14

    Google Scholar 

  • Dell’Abate MT, Benedetti A, Trinchera A, Dazzi C (2002) Humic substances along the profile of two typic haploxerert. Geoderma 107:281–296. doi:10.1016/S0016-7061(01)00153-7

    Article  Google Scholar 

  • Fahey TJ, Yavitt JB, Sherman RE, Groffman PM, Fisk MC, Maerz JC (2011) Transport of carbon and nitrogen between litter and soil organic matter in a northern hardwood forest. Ecosystems 14:326–340. doi:10.1007/s10021-011-9414-1

    Article  CAS  Google Scholar 

  • Fernández JM, Plante AF, Leifeld J, Rasmussen C (2011) Methodological considerations for using thermal analysis in the characterization of soil organic matter. J Therm Anal Calorim 104:389–398. doi:10.1007/s10973-010-1145-6

    Article  Google Scholar 

  • Fernández I, Carrasco B, Cabaneiro A (2012) Evolution of soil organic matter composition and edaphic carbon effluxes following oak forest clearing for pasture: climate change implications. Eur J For Res 131:1681–1693. doi:10.1007/s10342-011-0580-7

    Article  Google Scholar 

  • Foereid B, Barthram GT, Marriott CA (2007) The CENTURY model failed to simulate soil organic matter development in an acidic grassland. Nutr Cycl Agroecosys 78:143–153. doi:10.1007/s10705-006-9080-4

    Article  Google Scholar 

  • Gulde S, Chung H, Amelung W, Chang C, Six J (2008) Soil carbon saturation controls labile and stable carbon pool dynamics. Soil Sci Soc Am J 72:605–612. doi:10.2136/sssaj2007.0251

    Article  CAS  Google Scholar 

  • Guo LB, Wang M, Gifford RM (2007) The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant Soil 299:251–262. doi:10.1007/s11104-007-9381-7

    Article  CAS  Google Scholar 

  • Helfrich M, Ludwig B, Buurman P, Flessa H (2006) Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state 13C NMR spectroscopy. Geoderma 136:331–341. doi:10.1016/j.geoderma.2006.03.048

    Article  CAS  Google Scholar 

  • Huang Z, Davis MR, Condron LM, Clinton PW (2011) Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biol Biochem 43:1341–1349. doi:10.1016/j. soilbio.2011.03.008

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome

    Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. doi:10.1016/j.geoderma.2006.09.003

    Article  CAS  Google Scholar 

  • Kleber M, Nico PS, Plante AF, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modelling concepts and temperature sensitivity. Glob Chang Biol 17:1097–1107. doi:10.1111/j.1365-2486.2010.02278.x

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162. doi:10.1016/S0038-0717(01)00158-4

    Article  Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems - a review. Plant Soil 256:41–66. doi:10.1023/A:1026206511084

    Article  CAS  Google Scholar 

  • Lopez-Capel E, Sohi SP, Gaunt JL, Manning DAC (2005) Use of thermogravimetry–differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci Soc Am J 69:136–140. doi:10.2136/sssaj2005.0136

    CAS  Google Scholar 

  • Lopez-Sangil L, Rovira P (2013) Sequential extractions of the mineral-associated soil organic matter: an integrated approach for the fractionation of organo-mineral complexes: doi:10.1016/j.soilbio.2013.03.004

  • Marin-Spiotta E, Silver WL, Swanston CW, Ostertag R (2009) Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Glob Chang Biol 15:1584–1597. doi:10.1111/j.1365-2486.2008.01805.x

    Article  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schaeffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sc 171:91–110. doi:10.1002/jpln.200700049

    Article  CAS  Google Scholar 

  • Mathers NJ, Xu Z (2003) Solid-state 13C NMR spectroscopy: characterization of soil organic matter under two contrasting residue management regimes in a 2-year-old pine plantation of subtropical Australia. Geoderma 114:19–31. doi:10.1016/S0016-7061(02)00339-7

    Article  CAS  Google Scholar 

  • Mendham DS, Mathers NJ, O’Connell AM, Grove TS, Saffigna PG (2002) Impact of land-use on soil organic matter quality in south-western Australia - characterization with C-13 CP/MAS NMR spectroscopy. Soil Biol Biochem 34:1669–1673. doi:10.1016/S0038-0717(02)00151-7

    Article  CAS  Google Scholar 

  • Montané F, Romanyà J, Rovira P, Casals P (2010) Aboveground litter quality changes may drive soil organic carbon increase after shrub encroachment into mountain grasslands. Plant Soil 337:151–165. doi:10.1007/s11104-010-0512-1

    Article  Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259:857–866. doi:10.1016/j.foreco.2009.12.009

    Article  Google Scholar 

  • Otto A, Simpson MJ (2006) Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Org Geochem 37:385–407. doi:10.1016/j.orggeochem.2005.12.011

    Article  CAS  Google Scholar 

  • Ouro G, Pérez-Batallón P, Merino A (2001) Effects of silvicultural practices on nutrient status in a Pinus radiata plantation: nutrient export by tree removal and nutrient dynamics in decomposing logging residues. Ann For Sci 58:411–422. doi:10.1051/forest:2001134

    Article  Google Scholar 

  • Parfitt R, Newman RH (2000) 13CNMR study of pine needle decomposition. Plant Soil 219:273–278

    Article  CAS  Google Scholar 

  • Pérez-Cruzado C, Mansilla-Salinero P, Rodríguez-Soalleiro R, Merino A (2012a) Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant Soil 353:333–353. doi:10.1007/s11104-011-1035-0

    Article  Google Scholar 

  • Pérez-Cruzado C, Mohren GMJ, Merino A, Rodríguez-Soalleiro R (2012b) Carbon balance for different management practices for fast growing tree species planted on former pasture land in southern Europe. Eur J For Res 131:1695–1716. doi:10.1007/s10342-012-0609-6

    Article  Google Scholar 

  • Plante AF, Fernández JM, Haddix ML, Steinweg JM, Conant RT (2011) Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biol Biochem 43:1051–1058. doi:10.1016/j.soilbio.2011.01.024

    Article  CAS  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land–use change in the temperate zone–carbon response functions as a model approach. Glob Chang Biol 17:2415–2427. doi:10.1111/j.1365-2486.2011.02408.x

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu JN (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613. doi:10.1139/b97-872

    Article  CAS  Google Scholar 

  • Rovira P, Vallejo VR (2000) Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Commun Soil Sci Plan 31:81–100. doi:10.1080/00103620009370422

    Article  CAS  Google Scholar 

  • Rovira P, Kurz-Besson C, Couteaux MM, Vallejo VR (2008) Changes in litter properties during decomposition: a study by differential thermogravimetry and scanning calorimetry. Soil Biol Biochem 40:172–185. doi:10.1016/j.soilbio.2007.07.021

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing

  • Simón N, Montes F, Díaz-Pinés E, Benavides R, Roig S, Rubio A (2012) Spatial distribution of the soil organic carbon pool in a Holm oak dehesa in Spain. Plant Soil. doi:10.1007/s11104-012-1443-9

    Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176. doi:10.1023/A:1016125726789

    Article  CAS  Google Scholar 

  • Solomon D, Lehmann J, Kinyangi J, Amelung W, Lobe I, Pell A, Riha S, Ngoze S, Verchot L, Mbugua D, Skjemstad J, Schafer T (2007) Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Glob Chang Biol 13:511–530. doi:10.1111/j.1365-2486.2006.01304.x

    Article  Google Scholar 

  • Spiegelberger T, Hegg O, Matthies D, Hedlund K, Schaffner U (2006) Long-term effects of short-term perturbation in a subalpine grassland. Ecology 87:1939–1944. doi:10.1890/0012-9658(2006)87[1939:LEOSPI]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2009) Soil carbon saturation: implications for measurable carbon pool dynamics in long-term incubations. Soil Biol Biochem 41:357–366. doi:10.1016/j.soilbio.2008.11.011

    Article  CAS  Google Scholar 

  • Ussiri DAN, Johnson CE (2007) Organic matter composition and dynamics in a northern hardwood forest ecosystem 15 years after clear-cutting. For Ecol Manag 240:131–142. doi:10.1016/j.foreco.2006.12.017

    Article  Google Scholar 

  • Vancampenhout K, Wouters K, De Vos B, Buurman P, Swennen R, Deckers J (2009) Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions - A pyrolysis-GC/MS study. Soil Biol Biochem 41:568–579. doi:10.1016/j.soilbio.2008.12.023

    Article  CAS  Google Scholar 

  • von Lützow M, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445. doi:10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  • Wiesmeier M, Dick DP, Rumpel C, Dalmolin RSD, Hilscher A, Knicker H (2009) Depletion of soil organic carbon and nitrogen under Pinus taeda plantations in Southern Brazilian grasslands (Campos). Eur J Soil Sci 60:347–359. doi:10.1111/j.1365-2389.2009.01119.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the Spanish Ministry of Science (Project AGL 2009-13400-C05-04). We thank the Association of Forest Owners of Galicia (AFG) for their support. Soil analyses were carried out by Montse Gómez (RIAIDT-University of Santiago de Compostela). The authors are grateful to two anonymous reviewers for their helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Pérez-Cruzado.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Cruzado, C., Sande, B., Omil, B. et al. Organic matter properties in soils afforested with Pinus radiata . Plant Soil 374, 381–398 (2014). https://doi.org/10.1007/s11104-013-1896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1896-5

Keywords

Navigation