Skip to main content
Log in

Root trait responses of six temperate grassland species to intensive mowing and NPK fertilisation: a field study in a temperate grassland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Plant traits may characterize functional ecosystem properties and help to predict community responses to environmental change. Since most traits used relate to aboveground plant organs we aim to explore the indicative value of root traits.

Methods

We examined the response of root traits (specific root length [SRL], specific root surface area [SRA], root diameter [RD], root tissue mass density [TMD], root N concentration) in six grassland species (3 grasses, 3 herbs) to four management regimes (low vs. high mowing frequency; no fertilization vs. high NPK fertilization). The replicated experiment in temperate grassland with long continuity simulated the increase in grassland management intensity in the past 50 years in Central Europe.

Results

Increasing mowing frequency (one vs. three cuts per year) led to no significant root trait changes. NPK fertilization resulted in considerable trait shifts with all species responding in the same direction (higher SRL, SRA and N concentration, lower TMD) but at different magnitude. Fertilization-driven increases in SRA were mainly caused by lowered tissue density while root diameter reduction was the main driver of SRL increases.

Conclusion

We conclude that root morphological traits may be used as valuable indicators of environmental change and increasing fertilization in grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson EL (1988) Tillage and N-fertilization effects on maize root-growth and root - shoot ratio. Plant Soil 108:245–251

    Article  Google Scholar 

  • Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570

    Article  Google Scholar 

  • Craine JM (2005) Reconciling plant strategy theories of Grime and Tilman. J Ecol 93:1041–1052

    Article  Google Scholar 

  • Craine JM (2009) Resource strategies of wild plants. Princeton University Press, Princeton and Oxford

    Google Scholar 

  • Craine JM, Dybzinski R (2013) Mechanisms of plant competition for nutrients, water and light. Funct Ecol. doi:10.111/1365-2435.12081

    Google Scholar 

  • Craine JM, Wedin DA, Chapin FS, Reich PB (2003) The dependence of root system properties on root system biomass of 10 North American grassland species. Plant Soil 250:39–47

    Article  CAS  Google Scholar 

  • Dawson LA, Grayston SJ, Paterson E (2000) Effects of grazing on the roots and rhizosphere of grasses. In: Lemaire G, Hodgson J, de Moraes A, Nabinger C, De F. Carvalho PC (eds) Grassland ecophysiology and grazing ecology. CABI Publishing, Wallingford, pp 61–84

    Chapter  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. TREE 16:646–655

    Google Scholar 

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-DÍez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Google Scholar 

  • Dierschke H, Briemle G (2002) Kulturgrasland. Eugen Ulmer KG, Stuttgart

    Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. Journal of Plant Nutr 15:763–782

    Article  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–62

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Elberse WT, Berendse F (1993) A comparative-study of the growth and morphology of 8 grass species from habitats with different nutrient availabilities. Funct Ecol 7:223–229

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18, 2nd edn. Goltze, Göttingen

    Google Scholar 

  • Fender A-C, Leuschner C, Schützenmeister K, Gansert D, Jungkunst HF (2012) Rhizosphere effects of tree species – large reduction of N2O emissions by saplings of ash, but not of beech, in temperate forest soil. Eur J Soil Biol 54:7–15

    Article  Google Scholar 

  • Fiala K (1993) Underground biomass in meadow stands. In: Rychnovská M (ed) Structure and functioning of seminatural meadows. Elsevier, Amsterdam, pp 133–154

    Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 87–106

    Google Scholar 

  • Fitter A (1996) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, 2nd edn. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • From T, Petersen U, Isselstein J (2011) Productivity and forage quality of a phytodiverse semi-natural grassland under various management regimes. Nature Precedings http://precedings.nature.com/documents/6622/version/1 Accessed 3 March 2013

  • Gass P, Oertli JJ (1980) Durchwurzelungsvergleich zwischen Fettwiese und angrenzender Brachwiese. Zeitschrift für Pflanzenernährung und Bodenkunde 143:208–214

    Article  Google Scholar 

  • Hector A, von Felten S, Schmid B (2010) Analysis of variance with unbalanced data: an update for ecology & evolution. J Anim Ecol 79:308–316

    Article  PubMed  Google Scholar 

  • Hunt R, Cornelissen JHC (1997) Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytol 135:395–417

    Article  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer J, Mooney HA, Sala OE, Schulze E-D (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jaramillo VJ, Detling JK (1988) Grazing history, defoliation, and competition - effects on shortgrass production and nitrogen accumulation. Ecology 69:1599–1608

    Article  Google Scholar 

  • Lauenroth WK, Gill R (2003) Turnover of root systems. In: de Kroon H, Visser EJW (eds) Root Ecology. Ecol Stud 168. Springer, Berlin, pp 61–89

    Chapter  Google Scholar 

  • Lukac M, Godbold DL (2011) Soil ecology in northern forests. Cambridge University Press, New York

    Book  Google Scholar 

  • Maire V, Gross N, Pontes LDS, Picon-Cochard C, Soussana JF (2009) Trade-off between root nitrogen acquisition and shoot nitrogen utilization across 13 co-occurring pasture grass species. Funct Ecol 23:668–679

    Article  Google Scholar 

  • Matthew C, Assuero SG, Black CK, Sackville Hamilton NR (2000) Tiller dynamics of grazed swards. In: Lemaire et al. (eds) Grassland ecophysiology and grazing ecology. CAB International, pp 127–150

  • Milchunas DG, Lauenroth WK (1992) Carbon dynamics and estimates of primary production by harvest, 14C dilution and 14C turnover. Ecology 73:1593–1607

    Article  Google Scholar 

  • Mokany K, Ash JL (2008) Are traits measured on pot grown plants representative of those in natural communities? J Veg Sci 19:119–126

    Article  Google Scholar 

  • Ostonen I, Lohmus K, Lasn R (1999) The role of soil conditions in fine root ecomorphology in Norway spruce (Picea abies (L.) karst.). Plant Soil 208:283–292

    Article  CAS  Google Scholar 

  • Ostonen I, Puttsepp U, Biel C, Alberton O, Bakker MR, Lohmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosystems 141:426–442

    Article  Google Scholar 

  • Petersen U, Wrage N, Köhler L, Leuschner C, Isselstein J (2012) Manipulating the species composition of permanent grasslands - a new approach to biodiversity experiments. Basic Appl Ecol 13:1–9

    Article  Google Scholar 

  • Polomski J, Kuhn N (1998) Wurzelsysteme. Verlag Paul Haupt, Bern

    Google Scholar 

  • Poorter H, De Jong R (1999) A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol 143:163–176

    Article  CAS  Google Scholar 

  • Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553–559

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. PNAS 94:13730–13734

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB (1998a) Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Funct Ecol 12:948–958

    Article  Google Scholar 

  • Reich PB, Walters MB, Tjoelker MG, Vanderklein D, Buschena C (1998b) Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct Ecol 12:395–405

    Article  Google Scholar 

  • Reich PB, Buschena C, Tjoelker MG, Wrage K, Knops J, Tilman D, Machado JL (2003) Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. New Phytol 157:617–631

    Article  Google Scholar 

  • Richards JH (1984) Root-growth response to defoliation in 2 Agropyron bunchgrasses - field observations with an improved root periscope. Oecologia 64:21–25

    Article  Google Scholar 

  • Robinson D, Hodge A, Fitter A (2003) Constraints on the form and function of root systems. In: de Kroon H, Visser EJW (eds) Root Ecology. Ecol Stud 168. Springer, Berlin, pp 1–31

    Chapter  Google Scholar 

  • Rose L, Leuschner C (2012) The diversity-productivity relationship in a permanent temperate grassland: negative diversity effect, dominant influence of management regime. Plant Ecol & Diversity 5:265–274

    Article  Google Scholar 

  • Rose L, Rubarth MC, Hertel D, Leuschner C (2013) Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows. J Veg Sci 24:239–250

    Article  Google Scholar 

  • Roumet C, Urcelay C, Díaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368

    Article  PubMed  Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723

    Article  Google Scholar 

  • Ryser P (2006) The mysterious root length. Plant Soil 286:1–6

    Article  CAS  Google Scholar 

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast-growing and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265

    Article  CAS  Google Scholar 

  • Thorne MA, Frank DA (2009) The effects of clipping and soil moisture on leaf and root morphology and root respiration in two temperate and two tropical grasses. Plant Ecol 200:205–215

    Article  Google Scholar 

  • Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol 167:493–508

    Article  PubMed  CAS  Google Scholar 

  • Trubat R, Cortina J, Vilagrosa A (2006) Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.). Trees-Structure and Funct 20:334–339

    Article  Google Scholar 

  • Van der Krift TAJ, Berendse F (2002) Root life spans of four grass species from habitats differing in nutrient availability. Funct Ecol 16:198–203

    Article  Google Scholar 

  • Wahl S, Ryser P (2000) Root tissue structure is linked to ecological strategies of grasses. New Phytol 148:459–471

    Article  Google Scholar 

  • Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparisons of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76:381–397

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is part of the Cluster of Excellence ‘Functional Biodiversity Research’, funded by the Ministry of Science and Culture of Lower Saxony and the “Niedersächsisches Vorab”. The financial support is gratefully acknowledged. We thank Dietrich Hertel for valuable advice during the field campaign and Lars Köhler for manifold support with the site management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Rose.

Additional information

Responsible Editor: Duncan D. Cameron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuschner, C., Gebel, S. & Rose, L. Root trait responses of six temperate grassland species to intensive mowing and NPK fertilisation: a field study in a temperate grassland. Plant Soil 373, 687–698 (2013). https://doi.org/10.1007/s11104-013-1836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1836-4

Keywords

Navigation